Life-Time of Oil Filled Insulation Paper under Nonstandard Voltage Stresses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00326626" target="_blank" >RIV/68407700:21230/18:00326626 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8526140" target="_blank" >https://ieeexplore.ieee.org/document/8526140</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DIAGNOSTIKA.2018.8526140" target="_blank" >10.1109/DIAGNOSTIKA.2018.8526140</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Life-Time of Oil Filled Insulation Paper under Nonstandard Voltage Stresses
Popis výsledku v původním jazyce
In the recent years, technological development gave rise to numerous systems that utilize power semiconductor devices. As much as these devices improve the performance of electrical systems, they also pollute the network with voltage distortions. A mutual interaction between switching pulses, emitted by power electronics, and passive parameters of power system produce high-frequency harmonics and oscillating impulses. Although there are quite strict rules that define the maximum levels of such distortions, they are still theoretically able to increase the electrical stress of some parts of the power network. The distortions could, therefore, accelerate the aging process of insulation systems, which would, among others, pose a threat to the stability of electrical networks. Recently, a new aging model that respects nonsinusoidal voltage stresses has been developed. The model introduces a trio of specific parameters to describe the shape of applied voltage stress. This model has been applied to polymeric insulation, but the validity of this model for other insulation materials has not been verified yet. For this purpose, laboratory measurements with oil filled transformer paper insulation samples were carried out in our research. Voltage-time characteristics of transformer insulation paper were measured and evaluated by Weibull distribution. Parameters of Weibull distribution were determined and discussed. The increased effect of nonstandard voltage stress on a life-time of paper insulation was detected. The experimental results were discussed with the calculated results of the theoretical aging model. Specific parameters of the mentioned model were also calculated and compared with other available research publications.
Název v anglickém jazyce
Life-Time of Oil Filled Insulation Paper under Nonstandard Voltage Stresses
Popis výsledku anglicky
In the recent years, technological development gave rise to numerous systems that utilize power semiconductor devices. As much as these devices improve the performance of electrical systems, they also pollute the network with voltage distortions. A mutual interaction between switching pulses, emitted by power electronics, and passive parameters of power system produce high-frequency harmonics and oscillating impulses. Although there are quite strict rules that define the maximum levels of such distortions, they are still theoretically able to increase the electrical stress of some parts of the power network. The distortions could, therefore, accelerate the aging process of insulation systems, which would, among others, pose a threat to the stability of electrical networks. Recently, a new aging model that respects nonsinusoidal voltage stresses has been developed. The model introduces a trio of specific parameters to describe the shape of applied voltage stress. This model has been applied to polymeric insulation, but the validity of this model for other insulation materials has not been verified yet. For this purpose, laboratory measurements with oil filled transformer paper insulation samples were carried out in our research. Voltage-time characteristics of transformer insulation paper were measured and evaluated by Weibull distribution. Parameters of Weibull distribution were determined and discussed. The increased effect of nonstandard voltage stress on a life-time of paper insulation was detected. The experimental results were discussed with the calculated results of the theoretical aging model. Specific parameters of the mentioned model were also calculated and compared with other available research publications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika)
ISBN
978-1-5386-4424-9
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
44-47
Název nakladatele
Czechoslovakia Section IEEE
Místo vydání
Prague
Místo konání akce
Pilsen
Datum konání akce
4. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000451377600056