Mining on Manifolds: Metric Learning without Labels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327169" target="_blank" >RIV/68407700:21230/18:00327169 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8578895" target="_blank" >https://ieeexplore.ieee.org/document/8578895</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2018.00797" target="_blank" >10.1109/CVPR.2018.00797</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mining on Manifolds: Metric Learning without Labels
Popis výsledku v původním jazyce
In this work we present a novel unsupervised framework for hard training example mining. The only input to the method is a collection of images relevant to the target application and a meaningful initial representation, provided e.g. by pre-trained CNN. Positive examples are distant points on a single manifold, while negative examples are nearby points on different manifolds. Both types of examples are revealed by disagreements between Euclidean and manifold similarities. The discovered examples can be used in training with any discriminative loss. The method is applied to unsupervised fine-tuning of pre-trained networks for fine-grained classification and particular object retrieval. Our models are on par or are outperforming prior models that are fully or partially supervised.
Název v anglickém jazyce
Mining on Manifolds: Metric Learning without Labels
Popis výsledku anglicky
In this work we present a novel unsupervised framework for hard training example mining. The only input to the method is a collection of images relevant to the target application and a meaningful initial representation, provided e.g. by pre-trained CNN. Positive examples are distant points on a single manifold, while negative examples are nearby points on different manifolds. Both types of examples are revealed by disagreements between Euclidean and manifold similarities. The discovered examples can be used in training with any discriminative loss. The method is applied to unsupervised fine-tuning of pre-trained networks for fine-grained classification and particular object retrieval. Our models are on par or are outperforming prior models that are fully or partially supervised.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1303" target="_blank" >LL1303: Vyhledávání vizuálních kategorií ve velkém množství obrázků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2018: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-5386-6420-9
ISSN
1063-6919
e-ISSN
2575-7075
Počet stran výsledku
10
Strana od-do
7642-7651
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ
Místo konání akce
Salt Lake City
Datum konání akce
19. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000457843607082