Fast registration by boundary sampling and linear programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327728" target="_blank" >RIV/68407700:21230/18:00327728 - isvavai.cz</a>
Výsledek na webu
<a href="http://cmp.felk.cvut.cz/pub/cmp/articles/kybic/Kybic-MICCAI2018.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/kybic/Kybic-MICCAI2018.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-00928-1_88" target="_blank" >10.1007/978-3-030-00928-1_88</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast registration by boundary sampling and linear programming
Popis výsledku v původním jazyce
We address the problem of image registration when speed is more important than accuracy. We present a series of simplification and approximations applicable to almost any pixel-based image similarity criterion. We first sample the image at a set of sparse keypoints in a direction normal to image edges and then create a piecewise linear convex approximation of the individual contributions. We obtain a linear program for which a global optimum can be found very quickly by standard algorithms. The linear program formulation also allows for an easy addition of regularization and trust-region bounds. We have tested the approach for affine and B-spline transformation representation but any linear model can be used. Larger deformations can be handled by multiresolution. We show that our method is much faster than pixel- based registration, with only a small loss of accuracy. In comparison to standard keypoint based registration, our method is applicable even if individual keypoints cannot be reliably identiffied and matched.
Název v anglickém jazyce
Fast registration by boundary sampling and linear programming
Popis výsledku anglicky
We address the problem of image registration when speed is more important than accuracy. We present a series of simplification and approximations applicable to almost any pixel-based image similarity criterion. We first sample the image at a set of sparse keypoints in a direction normal to image edges and then create a piecewise linear convex approximation of the individual contributions. We obtain a linear program for which a global optimum can be found very quickly by standard algorithms. The linear program formulation also allows for an easy addition of regularization and trust-region bounds. We have tested the approach for affine and B-spline transformation representation but any linear model can be used. Larger deformations can be handled by multiresolution. We show that our method is much faster than pixel- based registration, with only a small loss of accuracy. In comparison to standard keypoint based registration, our method is applicable even if individual keypoints cannot be reliably identiffied and matched.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-15361S" target="_blank" >GA17-15361S: Učení lokálních konceptů z globálních trénovacích dat pro klasifikaci a segmentaci biomedicínských obrazů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Medical Image Computing and Computer Assisted Intervention, Part I
ISBN
978-3-030-00927-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
9
Strana od-do
783-791
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Granada
Datum konání akce
16. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—