Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

P04-Spatial geometric analysis in sleep polysomnographic data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00331865" target="_blank" >RIV/68407700:21230/18:00331865 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21460/18:00331865 RIV/68407700:21730/18:00331865

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.clinph.2018.01.049" target="_blank" >http://dx.doi.org/10.1016/j.clinph.2018.01.049</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.clinph.2018.01.049" target="_blank" >10.1016/j.clinph.2018.01.049</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    P04-Spatial geometric analysis in sleep polysomnographic data

  • Popis výsledku v původním jazyce

    The study is devoted to data processing methods in automatic sleep polysomnography (PSG) analysis. The idea is in using covariance matrices a carrier of a discriminative information. In the study, we are challenging with a problem of sleep stage classification. We are trying to solve that problem using spatial geometric analysis. For experiments, we took data from seven patients; data were recorded in National Institute of Mental Health. Artifact-free segments were extracted from the data. The covariance matrix was obtained for each segment. The classification was performed using a minimum distance to a class or in k-nearest-neighbor (KNN) method. A distance between objects was calculated using Riemannian Geometry. Classification methods were tested by cross-validation scheme. Using only covariance matrix of multimodal data and without additional information divided by frequency ranges, it is possible to classify sleep stages with high accuracy: the average accuracy for KNN is 0.929, for minimum distance to a class center it is only 0.816. Advantages of the method are working with data from different domains, adjustability to a different number of channels. Support: project No. 17-20480S of GACR, project “National Institute of Mental Health (NIMH-CZ),” Grant No. ED2.1.00/03.0078 and project No. LO1611.

  • Název v anglickém jazyce

    P04-Spatial geometric analysis in sleep polysomnographic data

  • Popis výsledku anglicky

    The study is devoted to data processing methods in automatic sleep polysomnography (PSG) analysis. The idea is in using covariance matrices a carrier of a discriminative information. In the study, we are challenging with a problem of sleep stage classification. We are trying to solve that problem using spatial geometric analysis. For experiments, we took data from seven patients; data were recorded in National Institute of Mental Health. Artifact-free segments were extracted from the data. The covariance matrix was obtained for each segment. The classification was performed using a minimum distance to a class or in k-nearest-neighbor (KNN) method. A distance between objects was calculated using Riemannian Geometry. Classification methods were tested by cross-validation scheme. Using only covariance matrix of multimodal data and without additional information divided by frequency ranges, it is possible to classify sleep stages with high accuracy: the average accuracy for KNN is 0.929, for minimum distance to a class center it is only 0.816. Advantages of the method are working with data from different domains, adjustability to a different number of channels. Support: project No. 17-20480S of GACR, project “National Institute of Mental Health (NIMH-CZ),” Grant No. ED2.1.00/03.0078 and project No. LO1611.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-20480S" target="_blank" >GA17-20480S: Časový kontext v úloze analýzy dlouhodobého nestacionárního vícerozměrného signálu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů