Sampling-Based Motion Planning for Tracking Evolution of Dynamic Tunnels in Molecular Dynamics Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00326510" target="_blank" >RIV/68407700:21230/19:00326510 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/19:00107165
Výsledek na webu
<a href="https://doi.org/10.1007/s10846-018-0877-6" target="_blank" >https://doi.org/10.1007/s10846-018-0877-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10846-018-0877-6" target="_blank" >10.1007/s10846-018-0877-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sampling-Based Motion Planning for Tracking Evolution of Dynamic Tunnels in Molecular Dynamics Simulations
Popis výsledku v původním jazyce
Proteins are involved in many biochemical processes. The behavior of proteins is highly influenced by the presence of internal void space, in literature denoted as tunnels or cavities. Tunnels are paths leading from an inner protein active site to its surface. The knowledge about tunnels and their evolution over time, captured in molecular dynamics simulations, provides an insight into important protein properties (e.g., their stability or activity). For each individual snapshot of molecular dynamics, tunnels can be detected using Voronoi diagrams and then aggregated over time to trace their behavior. However, this approach is suitable only when a given tunnel is detected in all snapshots of molecular dynamics. This is often not the case of traditionally used approaches to tunnel computation. When a tunnel becomes too narrow in a particular snapshot, the existing approaches cannot detect this case and the tunnel completely disappears from the results. On the other hand, this situation can be quite common as tunnels move, disappear and appear again, split, or merge. Therefore, in this paper we propose a method which enables to trace also tunnels in those missing snapshots. We call them dynamic tunnels and we use the sampling-based motion planning to compute them. The Rapidly Exploring Random Tree (RRT) algorithm is used to explore the void space in each frame of the protein dynamics. The void space is represented by a tree structure that is transferred to the next frame of the dynamics and updated to remove collisions and to cover newly emerged free regions of the void space. If the void space reaches the surface of the protein, a dynamic tunnel is reconstructed by tracking back in the tree towards a desired place (i.e., the active site).
Název v anglickém jazyce
Sampling-Based Motion Planning for Tracking Evolution of Dynamic Tunnels in Molecular Dynamics Simulations
Popis výsledku anglicky
Proteins are involved in many biochemical processes. The behavior of proteins is highly influenced by the presence of internal void space, in literature denoted as tunnels or cavities. Tunnels are paths leading from an inner protein active site to its surface. The knowledge about tunnels and their evolution over time, captured in molecular dynamics simulations, provides an insight into important protein properties (e.g., their stability or activity). For each individual snapshot of molecular dynamics, tunnels can be detected using Voronoi diagrams and then aggregated over time to trace their behavior. However, this approach is suitable only when a given tunnel is detected in all snapshots of molecular dynamics. This is often not the case of traditionally used approaches to tunnel computation. When a tunnel becomes too narrow in a particular snapshot, the existing approaches cannot detect this case and the tunnel completely disappears from the results. On the other hand, this situation can be quite common as tunnels move, disappear and appear again, split, or merge. Therefore, in this paper we propose a method which enables to trace also tunnels in those missing snapshots. We call them dynamic tunnels and we use the sampling-based motion planning to compute them. The Rapidly Exploring Random Tree (RRT) algorithm is used to explore the void space in each frame of the protein dynamics. The void space is represented by a tree structure that is transferred to the next frame of the dynamics and updated to remove collisions and to cover newly emerged free regions of the void space. If the void space reaches the surface of the protein, a dynamic tunnel is reconstructed by tracking back in the tree towards a desired place (i.e., the active site).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-07690S" target="_blank" >GA17-07690S: Metody identifikace a vizualizace tunelů pro flexibilní ligandy v dynamických proteinech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Intelligent and Robotic Systems
ISSN
0921-0296
e-ISSN
1573-0409
Svazek periodika
93
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
763-785
Kód UT WoS článku
000459439400024
EID výsledku v databázi Scopus
2-s2.0-85048538078