Control-oriented model of dielectrophoresis and electrorotation for arbitrarily shaped objects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00331501" target="_blank" >RIV/68407700:21230/19:00331501 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevE.99.053307" target="_blank" >https://doi.org/10.1103/PhysRevE.99.053307</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.99.053307" target="_blank" >10.1103/PhysRevE.99.053307</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Control-oriented model of dielectrophoresis and electrorotation for arbitrarily shaped objects
Popis výsledku v původním jazyce
The most popular modeling approach for dielectrophoresis (DEP) is the effective multipole (EM) method. It approximates the polarization-induced charge distribution in an object of interest by a set of multipolar moments. The Coulombic interaction of these moments with the external polarizing electric field then gives the DEP force and torque acting on the object. The multipolar moments for objects placed in arbitrary harmonic electric fields are, however, known only for spherical objects. This shape restriction significantly limits the use of the EM method. We present an approach for online (in real time) computation of multipolar moments for objects of arbitrary shapes having even arbitrary internal composition (inhomogeneous objects, more different materials, etc.). We exploit orthonormality of spherical harmonics to extract the multipolar moments from a numerical simulation of the polarized object. This can be done in advance (offline) for a set of external electric fields forming a basis so that the superposition principle can then be used for online operation. DEP force and torque can thus be computed in fractions of a second, which is needed, for example, in model-based control applications. We validate the proposed model against reference numerical solutions obtained using Maxwell stress tensor. We also analyze the importance of the higher-order multipolar moments using a sample case of a Tetris-shaped micro-object placed inside a quadrupolar microelectrode array and exposed to electrorotation. The implementation of the model in Matlab and Comsol is offered for free download.
Název v anglickém jazyce
Control-oriented model of dielectrophoresis and electrorotation for arbitrarily shaped objects
Popis výsledku anglicky
The most popular modeling approach for dielectrophoresis (DEP) is the effective multipole (EM) method. It approximates the polarization-induced charge distribution in an object of interest by a set of multipolar moments. The Coulombic interaction of these moments with the external polarizing electric field then gives the DEP force and torque acting on the object. The multipolar moments for objects placed in arbitrary harmonic electric fields are, however, known only for spherical objects. This shape restriction significantly limits the use of the EM method. We present an approach for online (in real time) computation of multipolar moments for objects of arbitrary shapes having even arbitrary internal composition (inhomogeneous objects, more different materials, etc.). We exploit orthonormality of spherical harmonics to extract the multipolar moments from a numerical simulation of the polarized object. This can be done in advance (offline) for a set of external electric fields forming a basis so that the superposition principle can then be used for online operation. DEP force and torque can thus be computed in fractions of a second, which is needed, for example, in model-based control applications. We validate the proposed model against reference numerical solutions obtained using Maxwell stress tensor. We also analyze the importance of the higher-order multipolar moments using a sample case of a Tetris-shaped micro-object placed inside a quadrupolar microelectrode array and exposed to electrorotation. The implementation of the model in Matlab and Comsol is offered for free download.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP206%2F12%2FG014" target="_blank" >GBP206/12/G014: Centrum pokročilých bioanalytických technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW E
ISSN
2470-0045
e-ISSN
2470-0053
Svazek periodika
99
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000469029000007
EID výsledku v databázi Scopus
2-s2.0-85066829520