EvoCreeper: Automated Black-Box Model Generation for Smart TV Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00331593" target="_blank" >RIV/68407700:21230/19:00331593 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/TCE.2019.2907017" target="_blank" >https://doi.org/10.1109/TCE.2019.2907017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TCE.2019.2907017" target="_blank" >10.1109/TCE.2019.2907017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EvoCreeper: Automated Black-Box Model Generation for Smart TV Applications
Popis výsledku v původním jazyce
Smart TVs are coming to dominate the television market. This accompanied by an increase in the use of the smart TV applications (apps). Due to the increasing demand, developers need modeling techniques to analyze these apps and assess their comprehensiveness, completeness, and quality. In this paper, we present an automated strategy for generating models of smart TV apps based on a black-box reverse engineering. The strategy can be used to cumulatively construct a model for a given app by exploring the user interface in a manner consistent with the use of a remote control device and extracting the runtime information. The strategy is based on capturing the states of the user interface to create a model during runtime without any knowledge of the internal structure of the app. We have implemented our strategy in a tool called EvoCreeper. The evaluation results show that our strategy can automatically generate unique states and a comprehensive model that represents the real user interactions with an app using a remote control device. The models thus generated can be used to assess the quality and completeness of smart TV apps in various contexts, such as the control of other consumer electronics in smart houses.
Název v anglickém jazyce
EvoCreeper: Automated Black-Box Model Generation for Smart TV Applications
Popis výsledku anglicky
Smart TVs are coming to dominate the television market. This accompanied by an increase in the use of the smart TV applications (apps). Due to the increasing demand, developers need modeling techniques to analyze these apps and assess their comprehensiveness, completeness, and quality. In this paper, we present an automated strategy for generating models of smart TV apps based on a black-box reverse engineering. The strategy can be used to cumulatively construct a model for a given app by exploring the user interface in a manner consistent with the use of a remote control device and extracting the runtime information. The strategy is based on capturing the states of the user interface to create a model during runtime without any knowledge of the internal structure of the app. We have implemented our strategy in a tool called EvoCreeper. The evaluation results show that our strategy can automatically generate unique states and a comprehensive model that represents the real user interactions with an app using a remote control device. The models thus generated can be used to assess the quality and completeness of smart TV apps in various contexts, such as the control of other consumer electronics in smart houses.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Consumer Electronics
ISSN
0098-3063
e-ISSN
1558-4127
Svazek periodika
65
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
160-169
Kód UT WoS článku
000466181000005
EID výsledku v databázi Scopus
2-s2.0-85063393778