Analytical solutions for elastic SH-waves propagating through an isotropic inhomogeneous layer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00331615" target="_blank" >RIV/68407700:21230/19:00331615 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.compstruct.2019.04.053" target="_blank" >https://doi.org/10.1016/j.compstruct.2019.04.053</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compstruct.2019.04.053" target="_blank" >10.1016/j.compstruct.2019.04.053</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analytical solutions for elastic SH-waves propagating through an isotropic inhomogeneous layer
Popis výsledku v původním jazyce
Plane time-harmonic elastic SH-wave propagation through an isotropic inhomogeneous layer surrounded by two homogeneous half-spaces is studied in this article. The material properties of the inhomogeneous layer are assumed to be non-uniform along the thickness direction according to a distribution law described by the triconfluent Heun functions or their polynomial forms that contain a number of optional parameters. The general analytical solution of the governing equation for elastic SH-waves in the layer is presented. Employing optional parameters, the material-property profiles can be varied to a relatively large extent without the need to seek new solutions of the governing equation for a chosen material-property profile. If the wave speed is constant in the inhomogeneous layer, the derived analytical solution is exact; otherwise the analytical solution is approximate. As a part of this article, the method enabling to find an approximate analytical solution of the governing equation for predetermined material functions is also presented. The applicability of the analytical solutions are tested and discussed based on the representative examples, and at the same time, the analytical results are compared with numerical ones to demonstrate their validity.
Název v anglickém jazyce
Analytical solutions for elastic SH-waves propagating through an isotropic inhomogeneous layer
Popis výsledku anglicky
Plane time-harmonic elastic SH-wave propagation through an isotropic inhomogeneous layer surrounded by two homogeneous half-spaces is studied in this article. The material properties of the inhomogeneous layer are assumed to be non-uniform along the thickness direction according to a distribution law described by the triconfluent Heun functions or their polynomial forms that contain a number of optional parameters. The general analytical solution of the governing equation for elastic SH-waves in the layer is presented. Employing optional parameters, the material-property profiles can be varied to a relatively large extent without the need to seek new solutions of the governing equation for a chosen material-property profile. If the wave speed is constant in the inhomogeneous layer, the derived analytical solution is exact; otherwise the analytical solution is approximate. As a part of this article, the method enabling to find an approximate analytical solution of the governing equation for predetermined material functions is also presented. The applicability of the analytical solutions are tested and discussed based on the representative examples, and at the same time, the analytical results are compared with numerical ones to demonstrate their validity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-24954S" target="_blank" >GA18-24954S: Šíření akustických vln fononickými materiály a strukturami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Composite Structures
ISSN
0263-8223
e-ISSN
1879-1085
Svazek periodika
220
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
875-887
Kód UT WoS článku
000465495700076
EID výsledku v databázi Scopus
2-s2.0-85064628374