Semi-automated detection of polysomnographic REM sleep without atonia (RSWA) in REM sleep behavioral disorder
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332157" target="_blank" >RIV/68407700:21230/19:00332157 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21460/19:00332157 RIV/68407700:21730/19:00332157
Výsledek na webu
<a href="https://doi.org/10.1016/j.bspc.2019.02.023" target="_blank" >https://doi.org/10.1016/j.bspc.2019.02.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bspc.2019.02.023" target="_blank" >10.1016/j.bspc.2019.02.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-automated detection of polysomnographic REM sleep without atonia (RSWA) in REM sleep behavioral disorder
Popis výsledku v původním jazyce
We aimed at evaluating semi-automatic detection and quantification of polysomnographic REM sleep without atonia (RSWA). As basic requirements, we defined lower time demand, the possibility of comparison of several evaluations and ease of examination for neurologists. We focused on well-known primary processing of surface electromyographic signals and selected recordings that were free of technical artifacts that could compromise automated signal detection. Thus we created a comprehensive method consisting of several modules (data preprocessing, signal filtration, envelopes creation, detection of ECG QRS complexes, iterative RSWA detection, detection evaluation and interactive visualization). The original dataset consisted of 7 individual polysomnography (PSG) recordings of individual human adult subjects with REM sleep behavior disorder (RBD). RSWA detection was performed with three different methods for envelope creation (envelope by moving average filter, envelope by Savitzky–Golay filtration and peaks interpolation). Best RSWA detection was achieved using the envelope by moving average filter (average precision 64.24 ± 12.34% and recall 91.63 ± 10.07%). The lowest precision was 42.86% with 100% recall.
Název v anglickém jazyce
Semi-automated detection of polysomnographic REM sleep without atonia (RSWA) in REM sleep behavioral disorder
Popis výsledku anglicky
We aimed at evaluating semi-automatic detection and quantification of polysomnographic REM sleep without atonia (RSWA). As basic requirements, we defined lower time demand, the possibility of comparison of several evaluations and ease of examination for neurologists. We focused on well-known primary processing of surface electromyographic signals and selected recordings that were free of technical artifacts that could compromise automated signal detection. Thus we created a comprehensive method consisting of several modules (data preprocessing, signal filtration, envelopes creation, detection of ECG QRS complexes, iterative RSWA detection, detection evaluation and interactive visualization). The original dataset consisted of 7 individual polysomnography (PSG) recordings of individual human adult subjects with REM sleep behavior disorder (RBD). RSWA detection was performed with three different methods for envelope creation (envelope by moving average filter, envelope by Savitzky–Golay filtration and peaks interpolation). Best RSWA detection was achieved using the envelope by moving average filter (average precision 64.24 ± 12.34% and recall 91.63 ± 10.07%). The lowest precision was 42.86% with 100% recall.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Signal Processing and Control
ISSN
1746-8094
e-ISSN
1746-8108
Svazek periodika
51
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
243-252
Kód UT WoS článku
000465051300025
EID výsledku v databázi Scopus
2-s2.0-85062469173