Graph-based particular object discovery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332224" target="_blank" >RIV/68407700:21230/19:00332224 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00138-019-01005-z" target="_blank" >https://doi.org/10.1007/s00138-019-01005-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00138-019-01005-z" target="_blank" >10.1007/s00138-019-01005-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graph-based particular object discovery
Popis výsledku v původním jazyce
Severe background clutter is challenging in many computer vision tasks, including large-scale image retrieval. Global descriptors, which are popular due to their memory and search efficiency, are especially prone to corruption by such a clutter. Eliminating the impact of the clutter on the image descriptor increases the chance of retrieving relevant images and prevents topic drift due to actually retrieving the clutter in the case of query expansion. In this work, we propose a novel salient region detection method. It captures, in an unsupervised manner, patterns that are both discriminative and common in the dataset. Saliency is based on a centrality measure of a nearest neighbor graph constructed from regional CNN representations of dataset images. The proposed method exploits recent CNN architectures trained for object retrieval to construct the image representation from the salient regions. We improve particular object retrieval on challenging datasets containing small objects.
Název v anglickém jazyce
Graph-based particular object discovery
Popis výsledku anglicky
Severe background clutter is challenging in many computer vision tasks, including large-scale image retrieval. Global descriptors, which are popular due to their memory and search efficiency, are especially prone to corruption by such a clutter. Eliminating the impact of the clutter on the image descriptor increases the chance of retrieving relevant images and prevents topic drift due to actually retrieving the clutter in the case of query expansion. In this work, we propose a novel salient region detection method. It captures, in an unsupervised manner, patterns that are both discriminative and common in the dataset. Saliency is based on a centrality measure of a nearest neighbor graph constructed from regional CNN representations of dataset images. The proposed method exploits recent CNN architectures trained for object retrieval to construct the image representation from the salient regions. We improve particular object retrieval on challenging datasets containing small objects.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Machine Vision and Applications
ISSN
0932-8092
e-ISSN
1432-1769
Svazek periodika
30
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
243-254
Kód UT WoS článku
000462151000005
EID výsledku v databázi Scopus
2-s2.0-85061245675