Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332394" target="_blank" >RIV/68407700:21230/19:00332394 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1364/OE.27.024083" target="_blank" >https://doi.org/10.1364/OE.27.024083</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1364/OE.27.024083" target="_blank" >10.1364/OE.27.024083</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communications
Popis výsledku v původním jazyce
This paper investigates the performance of the neural network (NN) assisted motion detection (MD) over an indoor optical camera communication (OCC) link. The proposed study is based on the performance evaluation of various NN training algorithms, which provide efficient and reliable MD functionality along with vision, illumination, data communications and sensing in indoor OCC. To evaluate the proposed scheme, we have carried out an experimental investigation of a static indoor downlink OCC link employing a mobile phone front camera as the receiver and an 8 x 8 red, green and blue light-emitting diodes array as the transmitter. In addition to data transmission, MD is achieved using a camera to observe user’s finger movement in the form of centroids via the OCC link. The captured motion is applied to the NN and is evaluated for a number of MD schemes. The results show that, resilient backpropagation based NN offers the fastest convergence with a minimum error of 10-5 within the processing time window of 0.67 s and a success probability of 100 % for MD compared to other algorithms. We demonstrate that, the proposed system with motion offers a bit error rate which is below the forward error correction limit of 3.8 x 10-3, over a transmission distance of 1.17 m.
Název v anglickém jazyce
Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communications
Popis výsledku anglicky
This paper investigates the performance of the neural network (NN) assisted motion detection (MD) over an indoor optical camera communication (OCC) link. The proposed study is based on the performance evaluation of various NN training algorithms, which provide efficient and reliable MD functionality along with vision, illumination, data communications and sensing in indoor OCC. To evaluate the proposed scheme, we have carried out an experimental investigation of a static indoor downlink OCC link employing a mobile phone front camera as the receiver and an 8 x 8 red, green and blue light-emitting diodes array as the transmitter. In addition to data transmission, MD is achieved using a camera to observe user’s finger movement in the form of centroids via the OCC link. The captured motion is applied to the NN and is evaluated for a number of MD schemes. The results show that, resilient backpropagation based NN offers the fastest convergence with a minimum error of 10-5 within the processing time window of 0.67 s and a success probability of 100 % for MD compared to other algorithms. We demonstrate that, the proposed system with motion offers a bit error rate which is below the forward error correction limit of 3.8 x 10-3, over a transmission distance of 1.17 m.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optics Express
ISSN
1094-4087
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
24082-24092
Kód UT WoS článku
000482098300036
EID výsledku v databázi Scopus
2-s2.0-85071093432