Incremental Learning of Traversability Cost for Aerial Reconnaissance Support to Ground Units
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332827" target="_blank" >RIV/68407700:21230/19:00332827 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-14984-0_30" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-14984-0_30</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-14984-0_30" target="_blank" >10.1007/978-3-030-14984-0_30</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Incremental Learning of Traversability Cost for Aerial Reconnaissance Support to Ground Units
Popis výsledku v původním jazyce
In this paper, we address traversability cost estimation using exteroceptive and proprioceptive data collected by a team of aerial and ground vehicles. The main idea of the proposed approach is to estimate the terrain traversability cost based on the real experience of the multi-legged walking robot with traversing different terrain types. We propose to combine visual features with the real measured traversability cost based on proprioceptive signals of the utilized hexapod walking robot as a ground unit. The estimated traversability cost is augmented by extracted visual features from the onboard robot camera, and the features are utilized to extrapolate the learned traversability model for an aerial scan of new environments to assess their traversability cost. The extrapolated traversability cost can be utilized in the high-level mission planning to avoid areas that are difficult to traverse but not visited by the ground units. The proposed approach has been experimentally verified with a real hexapod walking robot in indoor and outdoor scenarios.
Název v anglickém jazyce
Incremental Learning of Traversability Cost for Aerial Reconnaissance Support to Ground Units
Popis výsledku anglicky
In this paper, we address traversability cost estimation using exteroceptive and proprioceptive data collected by a team of aerial and ground vehicles. The main idea of the proposed approach is to estimate the terrain traversability cost based on the real experience of the multi-legged walking robot with traversing different terrain types. We propose to combine visual features with the real measured traversability cost based on proprioceptive signals of the utilized hexapod walking robot as a ground unit. The estimated traversability cost is augmented by extracted visual features from the onboard robot camera, and the features are utilized to extrapolate the learned traversability model for an aerial scan of new environments to assess their traversability cost. The extrapolated traversability cost can be utilized in the high-level mission planning to avoid areas that are difficult to traverse but not visited by the ground units. The proposed approach has been experimentally verified with a real hexapod walking robot in indoor and outdoor scenarios.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18858S" target="_blank" >GA18-18858S: Metody kontinuálního učení řízení pohybu vícenohých kráčejích robotů v úlohách autonomního sběru dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Modelling and Simulation for Autonomous Systems
ISBN
978-3-030-14983-3
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
412-421
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Praha
Datum konání akce
17. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—