Performance analysis of single-query 6-DoF camera pose estimation in self-driving setups
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00334761" target="_blank" >RIV/68407700:21230/19:00334761 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/10467/85606" target="_blank" >http://hdl.handle.net/10467/85606</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cviu.2019.04.009" target="_blank" >10.1016/j.cviu.2019.04.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance analysis of single-query 6-DoF camera pose estimation in self-driving setups
Popis výsledku v původním jazyce
In this work, we consider the problem of single-query 6-DoF camera pose estimation, i.e. estimating the position and orientation of a camera by using reference images and a point cloud. We perform a systematic comparison of three state-of-the-art strategies for 6-DoF camera pose estimation: feature-based, photometric-based and mutual-information-based approaches. Two standard datasets with self-driving setups are used for experiments, and the performance of the studied methods is evaluated in terms of success rate, translation error and maximum orientation error. Building on the analysis of the results, we evaluate a hybrid approach that combines feature-based and mutual-information-based pose estimation methods to benefit from their complementary properties for pose estimation. Experiments show that (1) in cases with large appearance change between query and reference, the hybrid approach outperforms feature-based and mutual-information-based approaches by an average increment of 9.4% and 8.7% in the success rate, respectively; (2) in cases where query and reference images are captured at similar imaging conditions, the hybrid approach performs similarly as the feature-based approach, but outperforms both photometric-based and mutual-informationbased approaches with a clear margin; (3) the feature-based approach is consistently more accurate than mutual-information-based and photometric-based approaches when at least 4 consistent matching points are found between the query and reference images.
Název v anglickém jazyce
Performance analysis of single-query 6-DoF camera pose estimation in self-driving setups
Popis výsledku anglicky
In this work, we consider the problem of single-query 6-DoF camera pose estimation, i.e. estimating the position and orientation of a camera by using reference images and a point cloud. We perform a systematic comparison of three state-of-the-art strategies for 6-DoF camera pose estimation: feature-based, photometric-based and mutual-information-based approaches. Two standard datasets with self-driving setups are used for experiments, and the performance of the studied methods is evaluated in terms of success rate, translation error and maximum orientation error. Building on the analysis of the results, we evaluate a hybrid approach that combines feature-based and mutual-information-based pose estimation methods to benefit from their complementary properties for pose estimation. Experiments show that (1) in cases with large appearance change between query and reference, the hybrid approach outperforms feature-based and mutual-information-based approaches by an average increment of 9.4% and 8.7% in the success rate, respectively; (2) in cases where query and reference images are captured at similar imaging conditions, the hybrid approach performs similarly as the feature-based approach, but outperforms both photometric-based and mutual-informationbased approaches with a clear margin; (3) the feature-based approach is consistently more accurate than mutual-information-based and photometric-based approaches when at least 4 consistent matching points are found between the query and reference images.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05360S" target="_blank" >GA18-05360S: Řešení inverzních problémů vznikajících při analýze rychle se pohybujících objektů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Údaje specifické pro druh výsledku
Název periodika
Computer Vision and Image Understanding
ISSN
1077-3142
e-ISSN
1090-235X
Svazek periodika
186
Číslo periodika v rámci svazku
Septamber
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
58-73
Kód UT WoS článku
000481564600006
EID výsledku v databázi Scopus
2-s2.0-85067195521