Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Basic Example of Applying Effective Component Selection Method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00335476" target="_blank" >RIV/68407700:21230/19:00335476 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Basic Example of Applying Effective Component Selection Method

  • Popis výsledku v původním jazyce

    When designing electronic circuits from discrete components, the finite number of component values in E series of preferred numbers is the limiting factor. For example, the E24 series contains just 24 component values per decade. If accuracy of the proposed circuit is required, use of E series of preferred numbers becomes limiting. The exact calculated value of the component must be rounded to the nearest value in the E series. This rounding creates the error of the proposed circuit parameters. For example, if an electronic filter needs to be designed, it will be out of tuning due to inaccurate part rounding. This paper deals with the error reduction. The error is caused by the necessity to use components from the E series of preferred numbers. The newly designed Effective Component Selection Method is used to minimize this error. The method works on the principle of multiple-stage optimization. The Effective Component Selection Method is applied on a very simple circuit, to design 21 different RC low pass filters. For comparison, rounding to the nearest value in the series method is also applied on the same example of the RC low pass filters design. The RC low pass filter's corner frequency fcor was chosen to be the filter's precision criterion. The results achieved by both methods were compared. The error of the designed circuit is calculated as the standard deviation of the difference between the wanted value and the resulting value. Compared with the Rounding to the nearest value in the series method, the Effective Component Selection Method reduces the error by 6 times.

  • Název v anglickém jazyce

    Basic Example of Applying Effective Component Selection Method

  • Popis výsledku anglicky

    When designing electronic circuits from discrete components, the finite number of component values in E series of preferred numbers is the limiting factor. For example, the E24 series contains just 24 component values per decade. If accuracy of the proposed circuit is required, use of E series of preferred numbers becomes limiting. The exact calculated value of the component must be rounded to the nearest value in the E series. This rounding creates the error of the proposed circuit parameters. For example, if an electronic filter needs to be designed, it will be out of tuning due to inaccurate part rounding. This paper deals with the error reduction. The error is caused by the necessity to use components from the E series of preferred numbers. The newly designed Effective Component Selection Method is used to minimize this error. The method works on the principle of multiple-stage optimization. The Effective Component Selection Method is applied on a very simple circuit, to design 21 different RC low pass filters. For comparison, rounding to the nearest value in the series method is also applied on the same example of the RC low pass filters design. The RC low pass filter's corner frequency fcor was chosen to be the filter's precision criterion. The results achieved by both methods were compared. The error of the designed circuit is calculated as the standard deviation of the difference between the wanted value and the resulting value. Compared with the Rounding to the nearest value in the series method, the Effective Component Selection Method reduces the error by 6 times.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů