Machine Learning for Power Control in D2D Communication based on Cellular Channel Gains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336726" target="_blank" >RIV/68407700:21230/19:00336726 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning for Power Control in D2D Communication based on Cellular Channel Gains
Popis výsledku v původním jazyce
We consider a mobile network with users seeking to engage in a device-to-device (D2D) communication. Two D2D users (DUEs), a transmitter and a receiver, compose one D2D pair.We assume that the D2D pairs reuse a single communication channel to increase the spectral efficiency. Thus, a power control is needed to manage interference among the D2D pairs and to maximize capacity. We address the problem of D2D power control in the case when only standard cellular channel gains between the DUEs and base stations (BSs) are known while channel gains among DUEs are not available at all. We exploit supervised machine learning to determine transmission powers for individual D2D pairs. We show that the cellular channel gains can, in fact, be exploited to predict the transmission power setting for D2D pairs and, still, close-to-optimum sum capacity of the D2D pairs is reached. Moreover, even if our proposed power control requires no knowledge of the channel gains among DUEs and, thus, introduces no additional signalling, the sum capacity can be increased by 16% to 41:9% with respect to no power control, as demonstrated via simulations. Index Terms—Device-to-device; Power
Název v anglickém jazyce
Machine Learning for Power Control in D2D Communication based on Cellular Channel Gains
Popis výsledku anglicky
We consider a mobile network with users seeking to engage in a device-to-device (D2D) communication. Two D2D users (DUEs), a transmitter and a receiver, compose one D2D pair.We assume that the D2D pairs reuse a single communication channel to increase the spectral efficiency. Thus, a power control is needed to manage interference among the D2D pairs and to maximize capacity. We address the problem of D2D power control in the case when only standard cellular channel gains between the DUEs and base stations (BSs) are known while channel gains among DUEs are not available at all. We exploit supervised machine learning to determine transmission powers for individual D2D pairs. We show that the cellular channel gains can, in fact, be exploited to predict the transmission power setting for D2D pairs and, still, close-to-optimum sum capacity of the D2D pairs is reached. Moreover, even if our proposed power control requires no knowledge of the channel gains among DUEs and, thus, introduces no additional signalling, the sum capacity can be increased by 16% to 41:9% with respect to no power control, as demonstrated via simulations. Index Terms—Device-to-device; Power
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-17538S" target="_blank" >GA17-17538S: Kombinace radiofrekvenčního pásma a viditelného spektra pro přímou komunikaci mezi zařízeními</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE Global Communications Conference (GLOBECOM) - Proceedings
ISBN
978-1-7281-0962-6
ISSN
2576-6813
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
American Institute of Physics and Magnetic Society of the IEEE
Místo vydání
San Francisco
Místo konání akce
Waikoloa, HI
Datum konání akce
9. 12. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—