Exploring logical consistency and viewport sensitivity in compositional VQA models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00336936" target="_blank" >RIV/68407700:21230/19:00336936 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/19:00336936
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/8967758" target="_blank" >https://ieeexplore.ieee.org/abstract/document/8967758</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS40897.2019.8967758" target="_blank" >10.1109/IROS40897.2019.8967758</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploring logical consistency and viewport sensitivity in compositional VQA models
Popis výsledku v původním jazyce
The most recent architectures for Visual Question Answering (VQA), such as TbD or DDRprog, have already outperformed human-level accuracy on benchmark datasets (e.g. CLEVR). We administered an advanced analysis of their performance based on novel metrics called consistency (sum of all object feature instances in the scene (e.g. shapes) equals the total number of the objects in the scene) and revealed only 56% consistency for the most accurate architecture (TbD). In respect to this finding, we propose a new method of the VQA training, which reaches 98% consistency. Furthermore, testing of the VQA model in real world brings out a problem with precise mimicking of the camera position from the original dataset. We therefore created a virtual environment along with its real-world counterpart with variable camera positions to test the accuracy and consistency from different viewports. Based on these errors, we were able to estimate optimal position of the camera. The proposed method thus allows us to find the optimal camera viewport in the real environment without knowing the geometry and the exact position of the camera in the synthetic training environment.
Název v anglickém jazyce
Exploring logical consistency and viewport sensitivity in compositional VQA models
Popis výsledku anglicky
The most recent architectures for Visual Question Answering (VQA), such as TbD or DDRprog, have already outperformed human-level accuracy on benchmark datasets (e.g. CLEVR). We administered an advanced analysis of their performance based on novel metrics called consistency (sum of all object feature instances in the scene (e.g. shapes) equals the total number of the objects in the scene) and revealed only 56% consistency for the most accurate architecture (TbD). In respect to this finding, we propose a new method of the VQA training, which reaches 98% consistency. Furthermore, testing of the VQA model in real world brings out a problem with precise mimicking of the camera position from the original dataset. We therefore created a virtual environment along with its real-world counterpart with variable camera positions to test the accuracy and consistency from different viewports. Based on these errors, we were able to estimate optimal position of the camera. The proposed method thus allows us to find the optimal camera viewport in the real environment without knowing the geometry and the exact position of the camera in the synthetic training environment.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISBN
978-1-7281-4004-9
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
6
Strana od-do
2108-2113
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ
Místo konání akce
Macau
Datum konání akce
4. 11. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000544658401111