E2E-MLT - An Unconstrained End-to-End Method for Multi-language Scene Text
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337397" target="_blank" >RIV/68407700:21230/19:00337397 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-319-10602-1_26" target="_blank" >https://doi.org/10.1007/978-3-319-10602-1_26</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-21074-8_11" target="_blank" >10.1007/978-3-030-21074-8_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
E2E-MLT - An Unconstrained End-to-End Method for Multi-language Scene Text
Popis výsledku v původním jazyce
An end-to-end trainable (fully differentiable) method for multi-language scene text localization and recognition is proposed. The approach is based on a single fully convolutional network (FCN) with shared layers for both tasks. E2E-MLT is the first published multi-language OCR for scene text. While trained in multi-language setup, E2E-MLT demonstrates competitive performance when compared to other methods trained for English scene text alone. The experiments show that obtaining accurate multi-language multi-script annotations is a challenging problem. Code and trained models are released publicly at https://github.com/MichalBusta/E2E-MLT.
Název v anglickém jazyce
E2E-MLT - An Unconstrained End-to-End Method for Multi-language Scene Text
Popis výsledku anglicky
An end-to-end trainable (fully differentiable) method for multi-language scene text localization and recognition is proposed. The approach is based on a single fully convolutional network (FCN) with shared layers for both tasks. E2E-MLT is the first published multi-language OCR for scene text. While trained in multi-language setup, E2E-MLT demonstrates competitive performance when compared to other methods trained for English scene text alone. The experiments show that obtaining accurate multi-language multi-script annotations is a challenging problem. Code and trained models are released publicly at https://github.com/MichalBusta/E2E-MLT.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ACCVW 2018: Proceedings of the 14th Asian Conference on Computer Vision Workshops
ISBN
978-3-030-21073-1
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
17
Strana od-do
127-143
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Perth
Datum konání akce
4. 12. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000492907100011