The Biaxial Strain Dependence of Magnetic Order in Spin Frustrated Mn3NiN Thin Films
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00337845" target="_blank" >RIV/68407700:21230/19:00337845 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/adfm.201902502" target="_blank" >https://doi.org/10.1002/adfm.201902502</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.201902502" target="_blank" >10.1002/adfm.201902502</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Biaxial Strain Dependence of Magnetic Order in Spin Frustrated Mn3NiN Thin Films
Popis výsledku v původním jazyce
Multicomponent magnetic phase diagrams are a key property of functional materials for a variety of uses, such as manipulation of magnetization for energy efficient memory, data storage, and cooling applications. Strong spin-lattice coupling extends this functionality further by allowing electric-field-control of magnetization via strain coupling with a piezoelectric. Here this work explores the magnetic phase diagram of piezomagnetic Mn3NiN thin films, with a frustrated noncollinear antiferromagnetic (AFM) structure, as a function of the growth induced biaxial strain. Under compressive strain, the films support a canted AFM state with large coercivity of the transverse anomalous Hall resistivity, rho(xy), at low temperature, that transforms at a well-defined Neel transition temperature (T-N) into a soft ferrimagnetic-like (FIM) state at high temperatures. In stark contrast, under tensile strain, the low temperature canted AFM phase transitions to a state where rho(xy) is an order of magnitude smaller and therefore consistent with a low magnetization phase. Neutron scattering confirms that the high temperature FIM-like phase of compressively strained films is magnetically ordered and the transition at T-N is first-order. The results open the field toward future exploration of electric-field-driven piezospintronic and thin film caloric cooling applications in both Mn3NiN itself and the broader Mn(3)AN family.
Název v anglickém jazyce
The Biaxial Strain Dependence of Magnetic Order in Spin Frustrated Mn3NiN Thin Films
Popis výsledku anglicky
Multicomponent magnetic phase diagrams are a key property of functional materials for a variety of uses, such as manipulation of magnetization for energy efficient memory, data storage, and cooling applications. Strong spin-lattice coupling extends this functionality further by allowing electric-field-control of magnetization via strain coupling with a piezoelectric. Here this work explores the magnetic phase diagram of piezomagnetic Mn3NiN thin films, with a frustrated noncollinear antiferromagnetic (AFM) structure, as a function of the growth induced biaxial strain. Under compressive strain, the films support a canted AFM state with large coercivity of the transverse anomalous Hall resistivity, rho(xy), at low temperature, that transforms at a well-defined Neel transition temperature (T-N) into a soft ferrimagnetic-like (FIM) state at high temperatures. In stark contrast, under tensile strain, the low temperature canted AFM phase transitions to a state where rho(xy) is an order of magnitude smaller and therefore consistent with a low magnetization phase. Neutron scattering confirms that the high temperature FIM-like phase of compressively strained films is magnetically ordered and the transition at T-N is first-order. The results open the field toward future exploration of electric-field-driven piezospintronic and thin film caloric cooling applications in both Mn3NiN itself and the broader Mn(3)AN family.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
1616-3028
Svazek periodika
29
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
6
Strana od-do
—
Kód UT WoS článku
000481381100001
EID výsledku v databázi Scopus
2-s2.0-85070262668