Electric Vehicle Travel Planning with Lazy Evaluation of Recharging Times
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00338088" target="_blank" >RIV/68407700:21230/19:00338088 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/SMC.2019.8913902" target="_blank" >https://doi.org/10.1109/SMC.2019.8913902</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC.2019.8913902" target="_blank" >10.1109/SMC.2019.8913902</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electric Vehicle Travel Planning with Lazy Evaluation of Recharging Times
Popis výsledku v původním jazyce
The basic premise of existing route planning algorithms is that complete information required for computing optimum routes is available at the time of the search. With the increasing complexity of transport systems, such an assumption is no longer valid as transport service providers are not willing to disclose full information about certain aspects of their services for business sensitivity reasons. Therefore, new approaches capable of computing optimal routes while minimizing the required amount of information about the services are required. In this paper, we investigate the incomplete information route planning problem in the context of planning routes with charging for electric vehicles. We have formalized the problem as a resource-constrained shortest path problem with time-dependent edge costs; the costs are only partially known and their values can be obtained by querying external data sources. We propose an optimum algorithm solving this problem utilizing two interchanging phases built on a multi-objective A* algorithm. We evaluate the properties of the algorithm on a comprehensive suite of test scenarios based on real-world data and derive insights into the properties of this emerging route planning problem.
Název v anglickém jazyce
Electric Vehicle Travel Planning with Lazy Evaluation of Recharging Times
Popis výsledku anglicky
The basic premise of existing route planning algorithms is that complete information required for computing optimum routes is available at the time of the search. With the increasing complexity of transport systems, such an assumption is no longer valid as transport service providers are not willing to disclose full information about certain aspects of their services for business sensitivity reasons. Therefore, new approaches capable of computing optimal routes while minimizing the required amount of information about the services are required. In this paper, we investigate the incomplete information route planning problem in the context of planning routes with charging for electric vehicles. We have formalized the problem as a resource-constrained shortest path problem with time-dependent edge costs; the costs are only partially known and their values can be obtained by querying external data sources. We propose an optimum algorithm solving this problem utilizing two interchanging phases built on a multi-objective A* algorithm. We evaluate the properties of the algorithm on a comprehensive suite of test scenarios based on real-world data and derive insights into the properties of this emerging route planning problem.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
ISBN
978-1-7281-4569-3
ISSN
2577-1655
e-ISSN
—
Počet stran výsledku
6
Strana od-do
3168-3173
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Bari
Datum konání akce
6. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—