Parabolic Set Simulation for Reachability Analysis of Linear Time Invariant Systems with Integral Quadratic Constraint
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00339647" target="_blank" >RIV/68407700:21230/19:00339647 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.23919/ECC.2019.8795930" target="_blank" >https://doi.org/10.23919/ECC.2019.8795930</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/ECC.2019.8795930" target="_blank" >10.23919/ECC.2019.8795930</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parabolic Set Simulation for Reachability Analysis of Linear Time Invariant Systems with Integral Quadratic Constraint
Popis výsledku v původním jazyce
This work extends reachability analyses based on ellipsoidal techniques to Linear Time Invariant (LTI) systems subject to an integral quadratic constraint (IQC) between the past state and disturbance signals, interpreted as an input-output energetic constraint. To compute the reachable set, the LTI system is augmented with a state corresponding to the amount of energy still available before the constraint is violated. For a given parabolic set of initial states, the reachable set of the augmented system is overapproximated with a time-varying parabolic set. Parameters of this paraboloid are expressed as the solution of an Initial Value Problem (IVP) and the overapproximation relationship with the reachable set is proved. This paraboloid is actually supported by the reachable set on so-called touching trajectories. Finally, we describe a method to generate all the supporting paraboloids and prove that their intersection is an exact characterization of the reachable set. This work provides new practical means to compute overapproximation of reachable sets for a wide variety of systems such as delayed systems, rate limiters or energy-bounded linear systems.
Název v anglickém jazyce
Parabolic Set Simulation for Reachability Analysis of Linear Time Invariant Systems with Integral Quadratic Constraint
Popis výsledku anglicky
This work extends reachability analyses based on ellipsoidal techniques to Linear Time Invariant (LTI) systems subject to an integral quadratic constraint (IQC) between the past state and disturbance signals, interpreted as an input-output energetic constraint. To compute the reachable set, the LTI system is augmented with a state corresponding to the amount of energy still available before the constraint is violated. For a given parabolic set of initial states, the reachable set of the augmented system is overapproximated with a time-varying parabolic set. Parameters of this paraboloid are expressed as the solution of an Initial Value Problem (IVP) and the overapproximation relationship with the reachable set is proved. This paraboloid is actually supported by the reachable set on so-called touching trajectories. Finally, we describe a method to generate all the supporting paraboloids and prove that their intersection is an exact characterization of the reachable set. This work provides new practical means to compute overapproximation of reachable sets for a wide variety of systems such as delayed systems, rate limiters or energy-bounded linear systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 18th European Control Conference
ISBN
978-3-907144-00-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
4301-4306
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ
Místo konání akce
Naples
Datum konání akce
25. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000490488304055