Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Jacob’s Ladder: Prime Numbers in 2D

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00336943" target="_blank" >RIV/68407700:21230/20:00336943 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/mca25010005" target="_blank" >https://doi.org/10.3390/mca25010005</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/mca25010005" target="_blank" >10.3390/mca25010005</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Jacob’s Ladder: Prime Numbers in 2D

  • Popis výsledku v původním jazyce

    Prime numbers are one of the most intriguing figures in mathematics. Despite centuries of research, many questions remain still unsolved. In recent years, computer simulations are playing a fundamental role in the study of an immense variety of problems. In this work, we present a simple representation of prime numbers in two dimensions that allows us to formulate a number of conjectures that may lead to important avenues in the field of research on prime numbers. In particular, although the zeroes in our representation grow in a somewhat erratic, hardly predictable way, the gaps between them present a remarkable and intriguing property: a clear exponential decay in the frequency of gaps vs. gap size. The smaller the gaps, the more frequently they appear. Additionally, the sequence of zeroes, despite being non-consecutive numbers, contains a number of primes approximately equal to n/ log n, n being the number of terms in the sequence.

  • Název v anglickém jazyce

    Jacob’s Ladder: Prime Numbers in 2D

  • Popis výsledku anglicky

    Prime numbers are one of the most intriguing figures in mathematics. Despite centuries of research, many questions remain still unsolved. In recent years, computer simulations are playing a fundamental role in the study of an immense variety of problems. In this work, we present a simple representation of prime numbers in two dimensions that allows us to formulate a number of conjectures that may lead to important avenues in the field of research on prime numbers. In particular, although the zeroes in our representation grow in a somewhat erratic, hardly predictable way, the gaps between them present a remarkable and intriguing property: a clear exponential decay in the frequency of gaps vs. gap size. The smaller the gaps, the more frequently they appear. Additionally, the sequence of zeroes, despite being non-consecutive numbers, contains a number of primes approximately equal to n/ log n, n being the number of terms in the sequence.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematical and Computational Applications

  • ISSN

    1300-686X

  • e-ISSN

    2297-8747

  • Svazek periodika

    25

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    17

  • Strana od-do

  • Kód UT WoS článku

    000524361400007

  • EID výsledku v databázi Scopus

    2-s2.0-85089761523