Jacob’s Ladder: Prime Numbers in 2D
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00336943" target="_blank" >RIV/68407700:21230/20:00336943 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/mca25010005" target="_blank" >https://doi.org/10.3390/mca25010005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/mca25010005" target="_blank" >10.3390/mca25010005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Jacob’s Ladder: Prime Numbers in 2D
Popis výsledku v původním jazyce
Prime numbers are one of the most intriguing figures in mathematics. Despite centuries of research, many questions remain still unsolved. In recent years, computer simulations are playing a fundamental role in the study of an immense variety of problems. In this work, we present a simple representation of prime numbers in two dimensions that allows us to formulate a number of conjectures that may lead to important avenues in the field of research on prime numbers. In particular, although the zeroes in our representation grow in a somewhat erratic, hardly predictable way, the gaps between them present a remarkable and intriguing property: a clear exponential decay in the frequency of gaps vs. gap size. The smaller the gaps, the more frequently they appear. Additionally, the sequence of zeroes, despite being non-consecutive numbers, contains a number of primes approximately equal to n/ log n, n being the number of terms in the sequence.
Název v anglickém jazyce
Jacob’s Ladder: Prime Numbers in 2D
Popis výsledku anglicky
Prime numbers are one of the most intriguing figures in mathematics. Despite centuries of research, many questions remain still unsolved. In recent years, computer simulations are playing a fundamental role in the study of an immense variety of problems. In this work, we present a simple representation of prime numbers in two dimensions that allows us to formulate a number of conjectures that may lead to important avenues in the field of research on prime numbers. In particular, although the zeroes in our representation grow in a somewhat erratic, hardly predictable way, the gaps between them present a remarkable and intriguing property: a clear exponential decay in the frequency of gaps vs. gap size. The smaller the gaps, the more frequently they appear. Additionally, the sequence of zeroes, despite being non-consecutive numbers, contains a number of primes approximately equal to n/ log n, n being the number of terms in the sequence.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical and Computational Applications
ISSN
1300-686X
e-ISSN
2297-8747
Svazek periodika
25
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000524361400007
EID výsledku v databázi Scopus
2-s2.0-85089761523