Email Image Spam Classification based on ResNet Convolutional Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00339961" target="_blank" >RIV/68407700:21230/20:00339961 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/20:00339961
Výsledek na webu
<a href="https://doi.org/10.5220/0008956704570464" target="_blank" >https://doi.org/10.5220/0008956704570464</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0008956704570464" target="_blank" >10.5220/0008956704570464</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Email Image Spam Classification based on ResNet Convolutional Neural Network
Popis výsledku v původním jazyce
The problem with email image spam classification is known from the year 2005. There are several approaches to this task. Lately, those approaches use convolutional neural networks (CNN). We propose a novel approach to the image spam classification task. Our approach is based on CNN and transfer learning, namely Resnet v1 used for semantic feature extraction and one layer Feedforward Neural Network for classification. We have shown that this approach can achieve state-of-the-art performance on publicly available datasets. 99% F1- score on two datasets (Dredze et al., 2007), Princeton and 96% F1-score on the combination of these datasets. Due to the availability of GPUs, this approach may be used for just-in-time classification in anti-spam systems handling huge amounts of emails. We have observed also that mentioned publicly available datasets are no longer representative. We overcame this limitation by using a much richer dataset from a one-week long real traffic of the freemail provider Email.cz. The training data annotation was created by user labeling of the emails. The image spam (and image ham even more) tackles privacy issues. We overcame it by publishing extracted feature vectors with associated classes (instead of images itself). This data does not violate privacy issues. We have published Email.cz image spam dataset v1 via the AcademicTorrents platform and propose a system, which achieves up to 96% F1-score with presented model architecture on this novel dataset. Providing our dataset to the community may help others with solving similar tasks.
Název v anglickém jazyce
Email Image Spam Classification based on ResNet Convolutional Neural Network
Popis výsledku anglicky
The problem with email image spam classification is known from the year 2005. There are several approaches to this task. Lately, those approaches use convolutional neural networks (CNN). We propose a novel approach to the image spam classification task. Our approach is based on CNN and transfer learning, namely Resnet v1 used for semantic feature extraction and one layer Feedforward Neural Network for classification. We have shown that this approach can achieve state-of-the-art performance on publicly available datasets. 99% F1- score on two datasets (Dredze et al., 2007), Princeton and 96% F1-score on the combination of these datasets. Due to the availability of GPUs, this approach may be used for just-in-time classification in anti-spam systems handling huge amounts of emails. We have observed also that mentioned publicly available datasets are no longer representative. We overcame this limitation by using a much richer dataset from a one-week long real traffic of the freemail provider Email.cz. The training data annotation was created by user labeling of the emails. The image spam (and image ham even more) tackles privacy issues. We overcame it by publishing extracted feature vectors with associated classes (instead of images itself). This data does not violate privacy issues. We have published Email.cz image spam dataset v1 via the AcademicTorrents platform and propose a system, which achieves up to 96% F1-score with presented model architecture on this novel dataset. Providing our dataset to the community may help others with solving similar tasks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 6th International Conference on Information Systems Security and Privacy
ISBN
978-989-758-399-5
ISSN
2184-4356
e-ISSN
—
Počet stran výsledku
8
Strana od-do
457-464
Název nakladatele
SciTePress
Místo vydání
Madeira
Místo konání akce
Valletta
Datum konání akce
25. 2. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000570766300047