Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Email Image Spam Classification based on ResNet Convolutional Neural Network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00339961" target="_blank" >RIV/68407700:21230/20:00339961 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/20:00339961

  • Výsledek na webu

    <a href="https://doi.org/10.5220/0008956704570464" target="_blank" >https://doi.org/10.5220/0008956704570464</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0008956704570464" target="_blank" >10.5220/0008956704570464</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Email Image Spam Classification based on ResNet Convolutional Neural Network

  • Popis výsledku v původním jazyce

    The problem with email image spam classification is known from the year 2005. There are several approaches to this task. Lately, those approaches use convolutional neural networks (CNN). We propose a novel approach to the image spam classification task. Our approach is based on CNN and transfer learning, namely Resnet v1 used for semantic feature extraction and one layer Feedforward Neural Network for classification. We have shown that this approach can achieve state-of-the-art performance on publicly available datasets. 99% F1- score on two datasets (Dredze et al., 2007), Princeton and 96% F1-score on the combination of these datasets. Due to the availability of GPUs, this approach may be used for just-in-time classification in anti-spam systems handling huge amounts of emails. We have observed also that mentioned publicly available datasets are no longer representative. We overcame this limitation by using a much richer dataset from a one-week long real traffic of the freemail provider Email.cz. The training data annotation was created by user labeling of the emails. The image spam (and image ham even more) tackles privacy issues. We overcame it by publishing extracted feature vectors with associated classes (instead of images itself). This data does not violate privacy issues. We have published Email.cz image spam dataset v1 via the AcademicTorrents platform and propose a system, which achieves up to 96% F1-score with presented model architecture on this novel dataset. Providing our dataset to the community may help others with solving similar tasks.

  • Název v anglickém jazyce

    Email Image Spam Classification based on ResNet Convolutional Neural Network

  • Popis výsledku anglicky

    The problem with email image spam classification is known from the year 2005. There are several approaches to this task. Lately, those approaches use convolutional neural networks (CNN). We propose a novel approach to the image spam classification task. Our approach is based on CNN and transfer learning, namely Resnet v1 used for semantic feature extraction and one layer Feedforward Neural Network for classification. We have shown that this approach can achieve state-of-the-art performance on publicly available datasets. 99% F1- score on two datasets (Dredze et al., 2007), Princeton and 96% F1-score on the combination of these datasets. Due to the availability of GPUs, this approach may be used for just-in-time classification in anti-spam systems handling huge amounts of emails. We have observed also that mentioned publicly available datasets are no longer representative. We overcame this limitation by using a much richer dataset from a one-week long real traffic of the freemail provider Email.cz. The training data annotation was created by user labeling of the emails. The image spam (and image ham even more) tackles privacy issues. We overcame it by publishing extracted feature vectors with associated classes (instead of images itself). This data does not violate privacy issues. We have published Email.cz image spam dataset v1 via the AcademicTorrents platform and propose a system, which achieves up to 96% F1-score with presented model architecture on this novel dataset. Providing our dataset to the community may help others with solving similar tasks.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 6th International Conference on Information Systems Security and Privacy

  • ISBN

    978-989-758-399-5

  • ISSN

    2184-4356

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    457-464

  • Název nakladatele

    SciTePress

  • Místo vydání

    Madeira

  • Místo konání akce

    Valletta

  • Datum konání akce

    25. 2. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000570766300047