Design of a flat-type magnetic position sensor using a finite-difference method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00340162" target="_blank" >RIV/68407700:21230/20:00340162 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1049/iet-smt.2019.0197" target="_blank" >https://doi.org/10.1049/iet-smt.2019.0197</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1049/iet-smt.2019.0197" target="_blank" >10.1049/iet-smt.2019.0197</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design of a flat-type magnetic position sensor using a finite-difference method
Popis výsledku v původním jazyce
This study presents an analysis and the design of a new flat-type position sensor with an external armature. One excitation coil and two antiserially connected pickup coils are used in the stationary part. Solid iron segments or steel lamination segments are used for the moving armature. The proposed position sensor was modelled using linear movement. A two-dimensional finite-difference method was developed and was used for fast analysis for optimising the sensor. The induced eddy currents in the solid armature were taken into account in the finite-difference analysis. The finite-difference calculations were compared with 2D and 3D finite-element method simulations and with experimental results. The sensor has a total error of 0.23 mm root-mean-square for 36 mm range without any compensation. Unlike previous designs, the authors’ new sensor has no moving coil.
Název v anglickém jazyce
Design of a flat-type magnetic position sensor using a finite-difference method
Popis výsledku anglicky
This study presents an analysis and the design of a new flat-type position sensor with an external armature. One excitation coil and two antiserially connected pickup coils are used in the stationary part. Solid iron segments or steel lamination segments are used for the moving armature. The proposed position sensor was modelled using linear movement. A two-dimensional finite-difference method was developed and was used for fast analysis for optimising the sensor. The induced eddy currents in the solid armature were taken into account in the finite-difference analysis. The finite-difference calculations were compared with 2D and 3D finite-element method simulations and with experimental results. The sensor has a total error of 0.23 mm root-mean-square for 36 mm range without any compensation. Unlike previous designs, the authors’ new sensor has no moving coil.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IET Science, Measurement & Technology
ISSN
1751-8822
e-ISSN
1751-8830
Svazek periodika
14
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
514-524
Kód UT WoS článku
000545618600002
EID výsledku v databázi Scopus
2-s2.0-85091081385