Robust Analytical Design of Optimal Equiripple Lowpass FIR Filters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00341599" target="_blank" >RIV/68407700:21230/20:00341599 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LSP.2020.2989679" target="_blank" >https://doi.org/10.1109/LSP.2020.2989679</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LSP.2020.2989679" target="_blank" >10.1109/LSP.2020.2989679</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Analytical Design of Optimal Equiripple Lowpass FIR Filters
Popis výsledku v původním jazyce
For the first time, an analytical design of optimal equiripple lowpass finite impulse response filters is presented. An analytical filter design, which is based on formulas, stands in contrast to the Parks-McClellan approach which is based on a numerical optimization. An advantage of evaluating impulse response coefficients using formulas over a numerical optimization is the robustness of the analytical design. Equiripple filters are optimal in terms of a minimal filter length for an arbitrary filter specification. The novel design is based on an equiripple approximating polynomial which approximates two constants in two disjoint intervals in optimal equiripple sense. A recursive formula for evaluating the impulse response of the filter is also introduced. The algorithm provides not only robust formulas for evaluating the impulse response, but also an analytical view on its coefficients. An example demonstrates the efficiency of the design. Its superiority in terms of robustness over the Parks-McClellan approach is emphasized.
Název v anglickém jazyce
Robust Analytical Design of Optimal Equiripple Lowpass FIR Filters
Popis výsledku anglicky
For the first time, an analytical design of optimal equiripple lowpass finite impulse response filters is presented. An analytical filter design, which is based on formulas, stands in contrast to the Parks-McClellan approach which is based on a numerical optimization. An advantage of evaluating impulse response coefficients using formulas over a numerical optimization is the robustness of the analytical design. Equiripple filters are optimal in terms of a minimal filter length for an arbitrary filter specification. The novel design is based on an equiripple approximating polynomial which approximates two constants in two disjoint intervals in optimal equiripple sense. A recursive formula for evaluating the impulse response of the filter is also introduced. The algorithm provides not only robust formulas for evaluating the impulse response, but also an analytical view on its coefficients. An example demonstrates the efficiency of the design. Its superiority in terms of robustness over the Parks-McClellan approach is emphasized.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE SIGNAL PROCESSING LETTERS
ISSN
1070-9908
e-ISSN
1558-2361
Svazek periodika
27
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
755-759
Kód UT WoS článku
000542927200002
EID výsledku v databázi Scopus
2-s2.0-85086769276