Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Control of energy dissipation in sliding low-dimensional materials

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342181" target="_blank" >RIV/68407700:21230/20:00342181 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1103/PhysRevB.102.085409" target="_blank" >https://doi.org/10.1103/PhysRevB.102.085409</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.102.085409" target="_blank" >10.1103/PhysRevB.102.085409</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Control of energy dissipation in sliding low-dimensional materials

  • Popis výsledku v původním jazyce

    Frictional forces acting during the relative motion of nanosurfaces are the cause of energy loss and wear which limit an efficient assembly and yield of atomic-scale devices. In this research, we investigate the microscopic origin of the dissipative processes as a result of the frictional response, with the aim to control them in a subtle way. We recast the study of friction in terms of phonon modes of the system at the equilibrium, with no need to resort to dynamics simulations. As a case study, we here consider layer sliding in transition metal dichalcogenides thin films. We find that the population of specific atomic orbitals and the relative contribution of the atomic type to selected system vibrations are the crucial quantities which determine the frictional response in tribological conditions. A reduced amount of energy dissipation is found when the bond character is more ionic and the layer sliding is realized by a faster motion of the chalcogen atoms. The individuated relevant parameters governing the energy dissipation can be used as descriptors in high-throughput calculations or machine learning engines to screen databases of frictional materials. The presented framework is general and can be promptly extended to the design of tribological materials with targeted frictional response, irrespective of the chemistry and atomic topology.

  • Název v anglickém jazyce

    Control of energy dissipation in sliding low-dimensional materials

  • Popis výsledku anglicky

    Frictional forces acting during the relative motion of nanosurfaces are the cause of energy loss and wear which limit an efficient assembly and yield of atomic-scale devices. In this research, we investigate the microscopic origin of the dissipative processes as a result of the frictional response, with the aim to control them in a subtle way. We recast the study of friction in terms of phonon modes of the system at the equilibrium, with no need to resort to dynamics simulations. As a case study, we here consider layer sliding in transition metal dichalcogenides thin films. We find that the population of specific atomic orbitals and the relative contribution of the atomic type to selected system vibrations are the crucial quantities which determine the frictional response in tribological conditions. A reduced amount of energy dissipation is found when the bond character is more ionic and the layer sliding is realized by a faster motion of the chalcogen atoms. The individuated relevant parameters governing the energy dissipation can be used as descriptors in high-throughput calculations or machine learning engines to screen databases of frictional materials. The presented framework is general and can be promptly extended to the design of tribological materials with targeted frictional response, irrespective of the chemistry and atomic topology.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PHYSICAL REVIEW B

  • ISSN

    2469-9950

  • e-ISSN

    2469-9969

  • Svazek periodika

    102

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    "085409-1"-"085409-8"

  • Kód UT WoS článku

    000557296200006

  • EID výsledku v databázi Scopus

    2-s2.0-85092152837