STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00342409" target="_blank" >RIV/68407700:21230/20:00342409 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3233/FAIA200259" target="_blank" >https://doi.org/10.3233/FAIA200259</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/FAIA200259" target="_blank" >10.3233/FAIA200259</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment
Popis výsledku v původním jazyce
Relational learning for knowledge base completion has been receiving considerable attention. Intuitively, rule-based strategies are clearly appealing, given their transparency and their ability to capture complex relational dependencies. In practice, however, pure rule-based strategies are currently not competitive with state-of-the-art methods, which is a reflection of the fact that (i) learning high-quality rules is challenging, and (ii) classical entailment is too brittle to cope with the noisy nature of the learned rules and the given knowledge base. In this paper, we introduce STRiKE, a new approach for relational learning in knowledge bases which addresses these concerns. Our contribution is three-fold. First, we introduce a new method for learning stratified rule bases from relational data. Second, to use these rules in a noise-tolerant way, we propose a strategy which extends k-entailment, a recently introduced cautious entailment relation, to stratified rule bases. Finally, we introduce an efficient algorithm for reasoning based on k-entailment.
Název v anglickém jazyce
STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment
Popis výsledku anglicky
Relational learning for knowledge base completion has been receiving considerable attention. Intuitively, rule-based strategies are clearly appealing, given their transparency and their ability to capture complex relational dependencies. In practice, however, pure rule-based strategies are currently not competitive with state-of-the-art methods, which is a reflection of the fact that (i) learning high-quality rules is challenging, and (ii) classical entailment is too brittle to cope with the noisy nature of the learned rules and the given knowledge base. In this paper, we introduce STRiKE, a new approach for relational learning in knowledge bases which addresses these concerns. Our contribution is three-fold. First, we introduce a new method for learning stratified rule bases from relational data. Second, to use these rules in a noise-tolerant way, we propose a strategy which extends k-entailment, a recently introduced cautious entailment relation, to stratified rule bases. Finally, we introduce an efficient algorithm for reasoning based on k-entailment.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020)
ISBN
978-1-64368-100-9
ISSN
0922-6389
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1515-1522
Název nakladatele
IOS Press
Místo vydání
Oxford
Místo konání akce
Virtual online
Datum konání akce
29. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—