Deep Learning for Selection Between RF and VLC Bands in Device-to-Device Communication
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00343556" target="_blank" >RIV/68407700:21230/20:00343556 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LWC.2020.3003786" target="_blank" >https://doi.org/10.1109/LWC.2020.3003786</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LWC.2020.3003786" target="_blank" >10.1109/LWC.2020.3003786</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning for Selection Between RF and VLC Bands in Device-to-Device Communication
Popis výsledku v původním jazyce
This letter focuses on the selection between radio frequency (RF) and visible light communications (VLC) bands for users exchanging data directly with each other via device-to-device (D2D) communication. We target to maximize the energy efficiency of D2D communication while the outage is minimized. Since the VLC channel can vary quickly due to the possible changes in irradiance and incidence angles, we aim to reach a quick band selection decision in a multi-user scenario based only on the knowledge of the received power and sum interference from all D2D transmitters at the individual D2D receivers. The proposed solution is based on a deep neural network making an initial band selection decision. Then, based on the DNN's output, a fast heuristic algorithm is proposed to further improve the band selection decision. The results show that the proposal reaches a close-to-optimal performance and outperforms the existing solutions in complexity, outage ratio, and energy efficiency.
Název v anglickém jazyce
Deep Learning for Selection Between RF and VLC Bands in Device-to-Device Communication
Popis výsledku anglicky
This letter focuses on the selection between radio frequency (RF) and visible light communications (VLC) bands for users exchanging data directly with each other via device-to-device (D2D) communication. We target to maximize the energy efficiency of D2D communication while the outage is minimized. Since the VLC channel can vary quickly due to the possible changes in irradiance and incidence angles, we aim to reach a quick band selection decision in a multi-user scenario based only on the knowledge of the received power and sum interference from all D2D transmitters at the individual D2D receivers. The proposed solution is based on a deep neural network making an initial band selection decision. Then, based on the DNN's output, a fast heuristic algorithm is proposed to further improve the band selection decision. The results show that the proposal reaches a close-to-optimal performance and outperforms the existing solutions in complexity, outage ratio, and energy efficiency.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-17538S" target="_blank" >GA17-17538S: Kombinace radiofrekvenčního pásma a viditelného spektra pro přímou komunikaci mezi zařízeními</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Wireless Communications Letters
ISSN
2162-2337
e-ISSN
2162-2345
Svazek periodika
9
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
1763-1767
Kód UT WoS článku
000577969000036
EID výsledku v databázi Scopus
2-s2.0-85092771813