Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimal Construction of Koopman Eigenfunctions for Prediction and Control

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00344904" target="_blank" >RIV/68407700:21230/20:00344904 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/TAC.2020.2978039" target="_blank" >https://doi.org/10.1109/TAC.2020.2978039</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TAC.2020.2978039" target="_blank" >10.1109/TAC.2020.2978039</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimal Construction of Koopman Eigenfunctions for Prediction and Control

  • Popis výsledku v původním jazyce

    This article presents a novel data-driven framework for constructing eigenfunctions of the Koopman operator geared toward prediction and control. The method leverages the richness of the spectrum of the Koopman operator away from attractors to construct a set of eigenfunctions such that the state (or any other observable quantity of interest) is in the span of these eigenfunctions and hence predictable in a linear fashion. The eigenfunction construction is optimization-based with no dictionary selection required. Once a predictor for the uncontrolled part of the system is obtained in this way, the incorporation of control is done through a multistep prediction error minimization, carried out by a simple linear least-squares regression. The predictor so obtained is in the form of a linear controlled dynamical system and can be readily applied within the Koopman model predictive control (MPC) framework of (M. Korda and I. Mezić, 2018) to control nonlinear dynamical systems using linear MPC tools. The method is entirely data-driven and based predominantly on convex optimization. The novel eigenfunction construction method is also analyzed theoretically, proving rigorously that the family of eigenfunctions obtained is rich enough to span the space of all continuous functions. In addition, the method is extended to construct generalized eigenfunctions that also give rise Koopman invariant subspaces and hence can be used for linear prediction. Detailed numerical examples demonstrate the approach, both for prediction and feedback control.

  • Název v anglickém jazyce

    Optimal Construction of Koopman Eigenfunctions for Prediction and Control

  • Popis výsledku anglicky

    This article presents a novel data-driven framework for constructing eigenfunctions of the Koopman operator geared toward prediction and control. The method leverages the richness of the spectrum of the Koopman operator away from attractors to construct a set of eigenfunctions such that the state (or any other observable quantity of interest) is in the span of these eigenfunctions and hence predictable in a linear fashion. The eigenfunction construction is optimization-based with no dictionary selection required. Once a predictor for the uncontrolled part of the system is obtained in this way, the incorporation of control is done through a multistep prediction error minimization, carried out by a simple linear least-squares regression. The predictor so obtained is in the form of a linear controlled dynamical system and can be readily applied within the Koopman model predictive control (MPC) framework of (M. Korda and I. Mezić, 2018) to control nonlinear dynamical systems using linear MPC tools. The method is entirely data-driven and based predominantly on convex optimization. The novel eigenfunction construction method is also analyzed theoretically, proving rigorously that the family of eigenfunctions obtained is rich enough to span the space of all continuous functions. In addition, the method is extended to construct generalized eigenfunctions that also give rise Koopman invariant subspaces and hence can be used for linear prediction. Detailed numerical examples demonstrate the approach, both for prediction and feedback control.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ20-11626Y" target="_blank" >GJ20-11626Y: Koncept Koopmanova operátoru pro řízení komplexních nelineárních dynamických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Automatic Control

  • ISSN

    0018-9286

  • e-ISSN

    1558-2523

  • Svazek periodika

    65

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    5114-5129

  • Kód UT WoS článku

    000595526300008

  • EID výsledku v databázi Scopus