On the Reversibility of Actions in Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00344948" target="_blank" >RIV/68407700:21230/20:00344948 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.24963/kr.2020/65" target="_blank" >https://doi.org/10.24963/kr.2020/65</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/kr.2020/65" target="_blank" >10.24963/kr.2020/65</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Reversibility of Actions in Planning
Popis výsledku v původním jazyce
Checking whether action effects can be undone is an important question for determining, for instance, whether a planning task has dead-ends. In this paper, we investigate the reversibility of actions, that is, when the effects of an action can be reverted by applying other actions, in order to return to the original state. We propose a broad notion of reversibility that generalizes previously defined versions and investigate interesting properties and relevant restrictions. In particular, we propose the concept of uniform reversibility that guarantees that an action can be reverted independently of the state in which the action was applied, using a so-called reverse plan. In addition, we perform an in-depth investigation of the computational complexity of deciding action reversibility. We show that reversibility checking with polynomial-length reverse plans is harder than polynomial-length planning and that, in case of unrestricted plan length, the PSPACE-hardness of planning is inherited. In order to deal with the high complexity of solving these tasks, we then propose several incomplete algorithms that may be used to compute reverse plans for a relevant subset of states.
Název v anglickém jazyce
On the Reversibility of Actions in Planning
Popis výsledku anglicky
Checking whether action effects can be undone is an important question for determining, for instance, whether a planning task has dead-ends. In this paper, we investigate the reversibility of actions, that is, when the effects of an action can be reverted by applying other actions, in order to return to the original state. We propose a broad notion of reversibility that generalizes previously defined versions and investigate interesting properties and relevant restrictions. In particular, we propose the concept of uniform reversibility that guarantees that an action can be reverted independently of the state in which the action was applied, using a so-called reverse plan. In addition, we perform an in-depth investigation of the computational complexity of deciding action reversibility. We show that reversibility checking with polynomial-length reverse plans is harder than polynomial-length planning and that, in case of unrestricted plan length, the PSPACE-hardness of planning is inherited. In order to deal with the high complexity of solving these tasks, we then propose several incomplete algorithms that may be used to compute reverse plans for a relevant subset of states.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning
ISBN
978-0-9992411-7-2
ISSN
2334-1033
e-ISSN
—
Počet stran výsledku
10
Strana od-do
652-661
Název nakladatele
International Joint Conferences on Artificial Intelligence Organization
Místo vydání
—
Místo konání akce
Rhodes
Datum konání akce
12. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—