Make E Smart Again (Short Paper)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00346612" target="_blank" >RIV/68407700:21230/20:00346612 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/20:00346612
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-51054-1_26" target="_blank" >https://doi.org/10.1007/978-3-030-51054-1_26</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-51054-1_26" target="_blank" >10.1007/978-3-030-51054-1_26</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Make E Smart Again (Short Paper)
Popis výsledku v původním jazyce
In this work in progress, we demonstrate a new use-case for the ENIGMA system. The ENIGMA system using the XGBoost implementation of gradient boosted decision trees has demonstrated high capability to learn to guide the E theorem prover’s inferences in real-time. Here, we strip E to the bare bones: we replace the KBO term ordering with an identity relation as the minimal possible ordering, disable literal selection, and replace evolved strategies with a simple combination of the clause weight and FIFO (first in first out) clause evaluation functions. We experimentally demonstrate that ENIGMA can learn to guide E as well as the smart, evolved strategies even without these standard automated theorem prover functionalities. To this end, we experiment with XGBoost’s meta-parameters over a dozen loops.
Název v anglickém jazyce
Make E Smart Again (Short Paper)
Popis výsledku anglicky
In this work in progress, we demonstrate a new use-case for the ENIGMA system. The ENIGMA system using the XGBoost implementation of gradient boosted decision trees has demonstrated high capability to learn to guide the E theorem prover’s inferences in real-time. Here, we strip E to the bare bones: we replace the KBO term ordering with an identity relation as the minimal possible ordering, disable literal selection, and replace evolved strategies with a simple combination of the clause weight and FIFO (first in first out) clause evaluation functions. We experimentally demonstrate that ENIGMA can learn to guide E as well as the smart, evolved strategies even without these standard automated theorem prover functionalities. To this end, we experiment with XGBoost’s meta-parameters over a dozen loops.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science
ISBN
978-3-030-51053-4
ISSN
0302-9743
e-ISSN
0302-9743
Počet stran výsledku
8
Strana od-do
408-415
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Paris
Datum konání akce
29. 6. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000884319500026