Natural Criteria for Comparison of Pedestrian Flow Forecasting Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00347506" target="_blank" >RIV/68407700:21230/20:00347506 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/IROS45743.2020.9341672" target="_blank" >https://doi.org/10.1109/IROS45743.2020.9341672</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS45743.2020.9341672" target="_blank" >10.1109/IROS45743.2020.9341672</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Natural Criteria for Comparison of Pedestrian Flow Forecasting Models
Popis výsledku v původním jazyce
Models of human behaviour, such as pedestrian flows, are beneficial for safe and efficient operation of mobile robots. We present a new methodology for benchmarking of pedestrian flow models based on the afforded safety of robot navigation in human-populated environments. While previous evaluations of pedestrian flow models focused on their predictive capabilities, we assess their ability to support safe path planning and scheduling. Using real-world datasets gathered continuously over several weeks, we benchmark state-of-the-art pedestrian flow models, including both time-averaged and time-sensitive models. In the evaluation, we use the learned models to plan robot trajectories and then observe the number of times when the robot gets too close to humans, using a predefined social distance threshold. The experiments show that while traditional evaluation criteria based on model fidelity differ only marginally, the introduced criteria vary significantly depending on the model used, providing a natural interpretation of the expected safety of the system. For the time-averaged flow models, the number of encounters increases linearly with the percentage operating time of the robot, as might be reasonably expected. By contrast, for the time-sensitive models, the number of encounters grows sublinearly with the percentage operating time, by planning to avoid congested areas and times.
Název v anglickém jazyce
Natural Criteria for Comparison of Pedestrian Flow Forecasting Models
Popis výsledku anglicky
Models of human behaviour, such as pedestrian flows, are beneficial for safe and efficient operation of mobile robots. We present a new methodology for benchmarking of pedestrian flow models based on the afforded safety of robot navigation in human-populated environments. While previous evaluations of pedestrian flow models focused on their predictive capabilities, we assess their ability to support safe path planning and scheduling. Using real-world datasets gathered continuously over several weeks, we benchmark state-of-the-art pedestrian flow models, including both time-averaged and time-sensitive models. In the evaluation, we use the learned models to plan robot trajectories and then observe the number of times when the robot gets too close to humans, using a predefined social distance threshold. The experiments show that while traditional evaluation criteria based on model fidelity differ only marginally, the introduced criteria vary significantly depending on the model used, providing a natural interpretation of the expected safety of the system. For the time-averaged flow models, the number of encounters increases linearly with the percentage operating time of the robot, as might be reasonably expected. By contrast, for the time-sensitive models, the number of encounters grows sublinearly with the percentage operating time, by planning to avoid congested areas and times.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
ISBN
978-1-7281-6212-6
ISSN
2153-0858
e-ISSN
2153-0866
Počet stran výsledku
8
Strana od-do
11197-11204
Název nakladatele
IEEE Robotics and Automation Society
Místo vydání
Piscataway
Místo konání akce
Las Vegas
Datum konání akce
25. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—