Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Benchmarking state-of-the-art symbolic regression algorithms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00340875" target="_blank" >RIV/68407700:21230/21:00340875 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/21:00340875

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10710-020-09387-0" target="_blank" >https://doi.org/10.1007/s10710-020-09387-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10710-020-09387-0" target="_blank" >10.1007/s10710-020-09387-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Benchmarking state-of-the-art symbolic regression algorithms

  • Popis výsledku v původním jazyce

    Symbolic regression (SR) is a powerful method for building predictive models from data without assuming any model structure. Traditionally, genetic programming (GP) was used as the SR engine. However, for these purely evolutionary methods it was quite hard to even accommodate the function to the range of the data and the training was consequently inefficient and slow. Recently, several SR algorithms emerged which employ multiple linear regression. This allows the algorithms to create models with relatively small error right from the beginning of the search. Such algorithms are claimed to be by orders of magnitude faster than SR algorithms based on classic GP. However, a systematic comparison of these algorithms on a common set of problems is still missing and there is no basis on which to decide which algorithm to use. In this paper we conceptually and experimentally compare several representatives of such algorithms: GPTIPS, FFX, and EFS. We also include GSGP-Red, which is an enhanced version of geometric semantic genetic programming, an important algorithm in the field of SR. They are applied as off-the-shelf, ready-to-use techniques, mostly using their default settings. The methods are compared on several synthetic SR benchmark problems as well as real-world ones ranging from civil engineering to aerodynamics and acoustics. Their performance is also related to the performance of three conventional machine learning algorithms: multiple regression, random forests and support vector regression. The results suggest that across all the problems, the algorithms have comparable performance. We provide basic recommendations to the user regarding the choice of the algorithm.

  • Název v anglickém jazyce

    Benchmarking state-of-the-art symbolic regression algorithms

  • Popis výsledku anglicky

    Symbolic regression (SR) is a powerful method for building predictive models from data without assuming any model structure. Traditionally, genetic programming (GP) was used as the SR engine. However, for these purely evolutionary methods it was quite hard to even accommodate the function to the range of the data and the training was consequently inefficient and slow. Recently, several SR algorithms emerged which employ multiple linear regression. This allows the algorithms to create models with relatively small error right from the beginning of the search. Such algorithms are claimed to be by orders of magnitude faster than SR algorithms based on classic GP. However, a systematic comparison of these algorithms on a common set of problems is still missing and there is no basis on which to decide which algorithm to use. In this paper we conceptually and experimentally compare several representatives of such algorithms: GPTIPS, FFX, and EFS. We also include GSGP-Red, which is an enhanced version of geometric semantic genetic programming, an important algorithm in the field of SR. They are applied as off-the-shelf, ready-to-use techniques, mostly using their default settings. The methods are compared on several synthetic SR benchmark problems as well as real-world ones ranging from civil engineering to aerodynamics and acoustics. Their performance is also related to the performance of three conventional machine learning algorithms: multiple regression, random forests and support vector regression. The results suggest that across all the problems, the algorithms have comparable performance. We provide basic recommendations to the user regarding the choice of the algorithm.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-22731S" target="_blank" >GA15-22731S: Symbolická regrese pro posilované učení ve spojitých prostorech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Genetic Programming and Evolvable Machines

  • ISSN

    1389-2576

  • e-ISSN

    1573-7632

  • Svazek periodika

    22

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    5-33

  • Kód UT WoS článku

    000521687000001

  • EID výsledku v databázi Scopus

    2-s2.0-85083357133