Homography-based Egomotion Estimation Using Gravity and SIFT Features
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00345989" target="_blank" >RIV/68407700:21230/21:00345989 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-69525-5_17" target="_blank" >https://doi.org/10.1007/978-3-030-69525-5_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-69525-5_17" target="_blank" >10.1007/978-3-030-69525-5_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homography-based Egomotion Estimation Using Gravity and SIFT Features
Popis výsledku v původním jazyce
Camera systems used, eg, in cars, UAVs, smartphones, and tablets, are typically equipped with IMUs (inertial measurement units) that can measure the gravity vector. Using the information from an IMU, the y-axes of cameras can be aligned with the gravity, reducing their relative orientation to a single DOF (degree of freedom). In this paper, we use the gravity information to derive extremely efficient minimal solvers for homography-based egomotion estimation from orientation-and scale-covariant features. We use the fact that orientation-and scale-covariant features, such as SIFT or ORB, provide additional constraints on the homography. Based on the prior knowledge about the target plane (horizontal/vertical/general plane, wrt the gravity direction) and using the SIFT/ORB constraints, we derive new minimal solvers that require fewer correspondences than traditional approaches and, thus, speed up the robust estimation procedure significantly. The proposed solvers are compared with the state-of-the-art point-based solvers on both synthetic data and real images, showing comparable accuracy and significant improvement in terms of speed. The implementation of our solvers is available at https://github. com/yaqding/relativepose-sift-gravity.
Název v anglickém jazyce
Homography-based Egomotion Estimation Using Gravity and SIFT Features
Popis výsledku anglicky
Camera systems used, eg, in cars, UAVs, smartphones, and tablets, are typically equipped with IMUs (inertial measurement units) that can measure the gravity vector. Using the information from an IMU, the y-axes of cameras can be aligned with the gravity, reducing their relative orientation to a single DOF (degree of freedom). In this paper, we use the gravity information to derive extremely efficient minimal solvers for homography-based egomotion estimation from orientation-and scale-covariant features. We use the fact that orientation-and scale-covariant features, such as SIFT or ORB, provide additional constraints on the homography. Based on the prior knowledge about the target plane (horizontal/vertical/general plane, wrt the gravity direction) and using the SIFT/ORB constraints, we derive new minimal solvers that require fewer correspondences than traditional approaches and, thus, speed up the robust estimation procedure significantly. The proposed solvers are compared with the state-of-the-art point-based solvers on both synthetic data and real images, showing comparable accuracy and significant improvement in terms of speed. The implementation of our solvers is available at https://github. com/yaqding/relativepose-sift-gravity.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ACCV 2020: Proceedings of the 14th Asian Conference on Computer Vision, Part I
ISBN
978-3-030-69524-8
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
17
Strana od-do
278-294
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Kyoto
Datum konání akce
30. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—