CNN Based Predictor of Face Image Quality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00347755" target="_blank" >RIV/68407700:21230/21:00347755 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-68780-9_52" target="_blank" >https://doi.org/10.1007/978-3-030-68780-9_52</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-68780-9_52" target="_blank" >10.1007/978-3-030-68780-9_52</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CNN Based Predictor of Face Image Quality
Popis výsledku v původním jazyce
We propose a novel method for training Convolution Neural Network, named CNN-FQ, which takes a face image and outputs a scalar summary of the image quality. The CNN-FQ is trained from triplets of faces that are automatically labeled based on responses of a pre-trained face matcher. The quality scores extracted by the CNN-FQ are directly linked to the probability that the face matcher incorrectly ranks a randomly selected triplet of faces. We applied the proposed CNN-FQ, trained on CASIA database, for selection of the best quality image from a collection of face images capturing the same identity. The quality of the single face representation was evaluated on 1:1 Verification and 1:N Identification tasks defined by the challenging IJB-B protocol. We show that the recognition performance obtained when using faces selected based on the CNN-FQ scores is significantly higher than what can be achieved by competing state-of-the-art image quality extractors.
Název v anglickém jazyce
CNN Based Predictor of Face Image Quality
Popis výsledku anglicky
We propose a novel method for training Convolution Neural Network, named CNN-FQ, which takes a face image and outputs a scalar summary of the image quality. The CNN-FQ is trained from triplets of faces that are automatically labeled based on responses of a pre-trained face matcher. The quality scores extracted by the CNN-FQ are directly linked to the probability that the face matcher incorrectly ranks a randomly selected triplet of faces. We applied the proposed CNN-FQ, trained on CASIA database, for selection of the best quality image from a collection of face images capturing the same identity. The quality of the single face representation was evaluated on 1:1 Verification and 1:N Identification tasks defined by the challenging IJB-B protocol. We show that the recognition performance obtained when using faces selected based on the CNN-FQ scores is significantly higher than what can be achieved by competing state-of-the-art image quality extractors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-21198S" target="_blank" >GA19-21198S: Složité predikční modely a jejich učení z částečně anotovaných dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Pattern Recognition. ICPR International Workshops and Challenges, Part VI
ISBN
978-3-030-68779-3
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
679-693
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Milan
Datum konání akce
10. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—