Visual Navigation in Real-World Indoor Environments Using End-to-End Deep Reinforcement Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350230" target="_blank" >RIV/68407700:21230/21:00350230 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/21:00350230
Výsledek na webu
<a href="https://doi.org/10.1109/LRA.2021.3068106" target="_blank" >https://doi.org/10.1109/LRA.2021.3068106</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LRA.2021.3068106" target="_blank" >10.1109/LRA.2021.3068106</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Visual Navigation in Real-World Indoor Environments Using End-to-End Deep Reinforcement Learning
Popis výsledku v původním jazyce
Visual navigation is essential for many applications in robotics, from manipulation, through mobile robotics to automated driving. Deep reinforcement learning (DRL) provides an elegant map-free approach integrating image processing, localization, and planning in one module, which can be trained and therefore optimized for a given environment. However, to date, DRL-based visual navigation was validated exclusively in simulation, where the simulator provides information that is not available in the real world, e.g., the robot's position or segmentation masks. This precludes the use of the learned policy on a real robot. Therefore, we present a novel approach that enables a direct deployment of the trained policy on real robots. We have designed a new powerful simulator capable of domain randomization. To facilitate the training, we propose visual auxiliary tasks and a tailored reward scheme. The policy is fine-tuned on images collected from real-world environments. We have evaluated the method on a mobile robot in a real office environment. The training took approximately 30 hours on a single GPU. In 30 navigation experiments, the robot reached a 0.3-meter neighbourhood of the goal in more than 86.7% of cases. This result makes the proposed method directly applicable to tasks like mobile manipulation.
Název v anglickém jazyce
Visual Navigation in Real-World Indoor Environments Using End-to-End Deep Reinforcement Learning
Popis výsledku anglicky
Visual navigation is essential for many applications in robotics, from manipulation, through mobile robotics to automated driving. Deep reinforcement learning (DRL) provides an elegant map-free approach integrating image processing, localization, and planning in one module, which can be trained and therefore optimized for a given environment. However, to date, DRL-based visual navigation was validated exclusively in simulation, where the simulator provides information that is not available in the real world, e.g., the robot's position or segmentation masks. This precludes the use of the learned policy on a real robot. Therefore, we present a novel approach that enables a direct deployment of the trained policy on real robots. We have designed a new powerful simulator capable of domain randomization. To facilitate the training, we propose visual auxiliary tasks and a tailored reward scheme. The policy is fine-tuned on images collected from real-world environments. We have evaluated the method on a mobile robot in a real office environment. The training took approximately 30 hours on a single GPU. In 30 navigation experiments, the robot reached a 0.3-meter neighbourhood of the goal in more than 86.7% of cases. This result makes the proposed method directly applicable to tasks like mobile manipulation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotika pro Průmysl 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Robotics and Automation Letters
ISSN
2377-3766
e-ISSN
2377-3766
Svazek periodika
6
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
4345-4352
Kód UT WoS článku
000639767800013
EID výsledku v databázi Scopus
2-s2.0-85103234640