Beyond graph neural networks with lifted relational neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350312" target="_blank" >RIV/68407700:21230/21:00350312 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10994-021-06017-3" target="_blank" >https://doi.org/10.1007/s10994-021-06017-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10994-021-06017-3" target="_blank" >10.1007/s10994-021-06017-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Beyond graph neural networks with lifted relational neural networks
Popis výsledku v původním jazyce
We introduce a declarative differentiable programming framework, based on the language of Lifted Relational Neural Networks, where small parameterized logic programs are used to encode deep relational learning scenarios through the underlying symmetries. When presented with relational data, such as various forms of graphs, the logic program interpreter dynamically unfolds differentiable computation graphs to be used for the program parameter optimization by standard means. Following from the declarative, relational logic-based encoding, this results into a unified representation of a wide range of neural models in the form of compact and elegant learning programs, in contrast to the existing procedural approaches operating directly on the computational graph level. We illustrate how this idea can be used for a concise encoding of existing advanced neural architectures, with the main focus on Graph Neural Networks (GNNs). Importantly, using the framework, we also show how the contemporary GNN models can be easily extended towards higher expressiveness in various ways. In the experiments, we demonstrate correctness and computation efficiency through comparison against specialized GNN frameworks, while shedding some light on the learning performance of the existing GNN models.
Název v anglickém jazyce
Beyond graph neural networks with lifted relational neural networks
Popis výsledku anglicky
We introduce a declarative differentiable programming framework, based on the language of Lifted Relational Neural Networks, where small parameterized logic programs are used to encode deep relational learning scenarios through the underlying symmetries. When presented with relational data, such as various forms of graphs, the logic program interpreter dynamically unfolds differentiable computation graphs to be used for the program parameter optimization by standard means. Following from the declarative, relational logic-based encoding, this results into a unified representation of a wide range of neural models in the form of compact and elegant learning programs, in contrast to the existing procedural approaches operating directly on the computational graph level. We illustrate how this idea can be used for a concise encoding of existing advanced neural architectures, with the main focus on Graph Neural Networks (GNNs). Importantly, using the framework, we also show how the contemporary GNN models can be easily extended towards higher expressiveness in various ways. In the experiments, we demonstrate correctness and computation efficiency through comparison against specialized GNN frameworks, while shedding some light on the learning performance of the existing GNN models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Machine Learning
ISSN
0885-6125
e-ISSN
1573-0565
Svazek periodika
2021
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
44
Strana od-do
1695-1738
Kód UT WoS článku
000661770500002
EID výsledku v databázi Scopus
2-s2.0-85107933318