Fast and Error-Free Negacyclic Integer Convolution using Extended Fourier Transform
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350544" target="_blank" >RIV/68407700:21230/21:00350544 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-78086-9_22" target="_blank" >https://doi.org/10.1007/978-3-030-78086-9_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-78086-9_22" target="_blank" >10.1007/978-3-030-78086-9_22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast and Error-Free Negacyclic Integer Convolution using Extended Fourier Transform
Popis výsledku v původním jazyce
With the rise of lattice cryptography,(negacyclic) convolution has received increased attention. Eg, the NTRU scheme internally employs cyclic polynomial multiplication, which is equivalent to the standard convolution, on the other hand, many Ring-LWE-based cryptosystems perform negacyclic polynomial multiplication. A method by Crandall implements an efficient negacyclic convolution over a finite field of prime order using an extended Discrete Galois Transform (DGT)–a finite field analogy to Discrete Fourier Transform (DFT). Compared to DGT, the classical DFT runs faster by an order of magnitude, however, it suffers from inevitable rounding errors due to finite floating-point number representation. In a recent Fully Homomorphic Encryption (FHE) scheme by Chillotti et al. named TFHE, small errors are acceptable (although not welcome), therefore we decided to investigate the application of DFT for negacyclic convolution. The primary goal of this paper is to suggest a method for fast negacyclic convolution over integer coefficients using an extended DFT. The key contribution is a thorough analysis of error propagation, as a result of which we derive parameter bounds that can guarantee even error-free results. We also suggest a setup that admits rare errors, which allows to increase the degree of the polynomials and/or their maximum norm at a fixed floating-point precision. Finally, we run benchmarks with parameters derived from a practical TFHE setup. We achieve around 24x better times than the generic NTL library (comparable to Crandall’s method) and around 4x better times than a naıve approach with DFT, with no errors.
Název v anglickém jazyce
Fast and Error-Free Negacyclic Integer Convolution using Extended Fourier Transform
Popis výsledku anglicky
With the rise of lattice cryptography,(negacyclic) convolution has received increased attention. Eg, the NTRU scheme internally employs cyclic polynomial multiplication, which is equivalent to the standard convolution, on the other hand, many Ring-LWE-based cryptosystems perform negacyclic polynomial multiplication. A method by Crandall implements an efficient negacyclic convolution over a finite field of prime order using an extended Discrete Galois Transform (DGT)–a finite field analogy to Discrete Fourier Transform (DFT). Compared to DGT, the classical DFT runs faster by an order of magnitude, however, it suffers from inevitable rounding errors due to finite floating-point number representation. In a recent Fully Homomorphic Encryption (FHE) scheme by Chillotti et al. named TFHE, small errors are acceptable (although not welcome), therefore we decided to investigate the application of DFT for negacyclic convolution. The primary goal of this paper is to suggest a method for fast negacyclic convolution over integer coefficients using an extended DFT. The key contribution is a thorough analysis of error propagation, as a result of which we derive parameter bounds that can guarantee even error-free results. We also suggest a setup that admits rare errors, which allows to increase the degree of the polynomials and/or their maximum norm at a fixed floating-point precision. Finally, we run benchmarks with parameters derived from a practical TFHE setup. We achieve around 24x better times than the generic NTL library (comparable to Crandall’s method) and around 4x better times than a naıve approach with DFT, with no errors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Cyber Security Cryptography and Machine Learning
ISBN
978-3-030-78085-2
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
19
Strana od-do
282-300
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Basel
Místo konání akce
Be'er Sheva
Datum konání akce
8. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—