Saliency Driven Perceptual Image Compression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350832" target="_blank" >RIV/68407700:21230/21:00350832 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/WACV48630.2021.00027" target="_blank" >https://doi.org/10.1109/WACV48630.2021.00027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV48630.2021.00027" target="_blank" >10.1109/WACV48630.2021.00027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Saliency Driven Perceptual Image Compression
Popis výsledku v původním jazyce
This paper proposes a new end-to-end trainable model for lossy image compression, which includes several novel components. The method incorporates 1) an adequate perceptual similarity metric; 2) saliency in the images; 3) a hierarchical auto-regressive model. This paper demonstrates that the popularly used evaluations metrics such as MS-SSIM and PSNR are inadequate for judging the performance of image compression techniques as they do not align with the human perception of similarity. Alternatively, a new metric is proposed, which is learned on perceptual similarity data specific to image compression. The proposed compression model incorporates the salient regions and optimizes on the proposed perceptual similarity metric. The model not only generates images which are visually better but also gives superior performance for subsequent computer vision tasks such as object detection and segmentation when compared to existing engineered or learned compression techniques.
Název v anglickém jazyce
Saliency Driven Perceptual Image Compression
Popis výsledku anglicky
This paper proposes a new end-to-end trainable model for lossy image compression, which includes several novel components. The method incorporates 1) an adequate perceptual similarity metric; 2) saliency in the images; 3) a hierarchical auto-regressive model. This paper demonstrates that the popularly used evaluations metrics such as MS-SSIM and PSNR are inadequate for judging the performance of image compression techniques as they do not align with the human perception of similarity. Alternatively, a new metric is proposed, which is learned on perceptual similarity data specific to image compression. The proposed compression model incorporates the salient regions and optimizes on the proposed perceptual similarity metric. The model not only generates images which are visually better but also gives superior performance for subsequent computer vision tasks such as object detection and segmentation when compared to existing engineered or learned compression techniques.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE Winter Conference on Applications of Computer Vision (WACV)
ISBN
978-0-7381-4266-1
ISSN
2472-6737
e-ISSN
2642-9381
Počet stran výsledku
10
Strana od-do
227-236
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
New York
Místo konání akce
Waikoloa, HI
Datum konání akce
5. 1. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000692171000023