Investigation on Cycling and Calendar Aging Processes of 3.4 Ah Lithium-Sulfur Pouch Cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00350988" target="_blank" >RIV/68407700:21230/21:00350988 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/su13169473" target="_blank" >https://doi.org/10.3390/su13169473</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su13169473" target="_blank" >10.3390/su13169473</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigation on Cycling and Calendar Aging Processes of 3.4 Ah Lithium-Sulfur Pouch Cells
Popis výsledku v původním jazyce
Much attention has been paid to rechargeable lithium-sulfur batteries (Li–SBs) due to their high theoretical specific capacity, high theoretical energy density, and affordable cost. However, their rapid c fading capacity has been one of the key defects in their commercialization. It is believed that sulfuric cathode degradation is driven mainly by passivation of the cathode surface by Li2S at discharge, polysulfide shuttle (reducing the amount of active sulfur at the cathode, passivation of anode surface), and volume changes in the sulfuric cathode. These degradation mechanisms are significant during cycling, and the polysulfide shuttle is strongly present during storage at a high state-of-charge (SOC). Thus, storage at 50% SOC is used to evaluate the effect of the remaining degradation processes on the cell’s performance. In this work, unlike most of the other previous observations that were performed at small-scale cells (coin cells), 3.4 Ah pouch Li–SBs were tested using cycling and calendar aging protocols, and their performance indicators were analyzed. As expected, the fade capacity of the cycling aging cells was greater than that of the calendar aging cells. Additionally, the measurements for the calendar aging cells indicate that, contrary to the expectation of stopping the solubility of long-chain polysulfides and not attending the shuttle effect, these phenomena occur continuously under open-circuit conditions.
Název v anglickém jazyce
Investigation on Cycling and Calendar Aging Processes of 3.4 Ah Lithium-Sulfur Pouch Cells
Popis výsledku anglicky
Much attention has been paid to rechargeable lithium-sulfur batteries (Li–SBs) due to their high theoretical specific capacity, high theoretical energy density, and affordable cost. However, their rapid c fading capacity has been one of the key defects in their commercialization. It is believed that sulfuric cathode degradation is driven mainly by passivation of the cathode surface by Li2S at discharge, polysulfide shuttle (reducing the amount of active sulfur at the cathode, passivation of anode surface), and volume changes in the sulfuric cathode. These degradation mechanisms are significant during cycling, and the polysulfide shuttle is strongly present during storage at a high state-of-charge (SOC). Thus, storage at 50% SOC is used to evaluate the effect of the remaining degradation processes on the cell’s performance. In this work, unlike most of the other previous observations that were performed at small-scale cells (coin cells), 3.4 Ah pouch Li–SBs were tested using cycling and calendar aging protocols, and their performance indicators were analyzed. As expected, the fade capacity of the cycling aging cells was greater than that of the calendar aging cells. Additionally, the measurements for the calendar aging cells indicate that, contrary to the expectation of stopping the solubility of long-chain polysulfides and not attending the shuttle effect, these phenomena occur continuously under open-circuit conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SUSTAINABILITY
ISSN
2071-1050
e-ISSN
2071-1050
Svazek periodika
13
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000689817800001
EID výsledku v databázi Scopus
2-s2.0-85113662377