Asynchronous Optimization Methods for Efficient Training of Deep Neural Networks with Guarantees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00351170" target="_blank" >RIV/68407700:21230/21:00351170 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/1905.11845" target="_blank" >https://arxiv.org/abs/1905.11845</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asynchronous Optimization Methods for Efficient Training of Deep Neural Networks with Guarantees
Popis výsledku v původním jazyce
Asynchronous distributed algorithms are a popular way to reduce synchronization costs in large-scale optimization, and in particular for neural network training. However, for nonsmooth and nonconvex objectives, few convergence guarantees exist beyond cases where closed-form proximal operator solutions are available. As training most popular deep neural networks corresponds to optimizing nonsmooth and nonconvex objectives, there is a pressing need for such convergence guarantees. In this paper, we analyze for the first time the convergence of stochastic asynchronous optimization for this general class of objectives. In particular, we focus on stochastic subgradient methods allowing for block variable partitioning, where the shared model is asynchronously updated by concurrent processes. To this end, we use a probabilistic model which captures key features of real asynchronous scheduling between concurrent processes. Under this model, we establish convergence with probability one to an invariant set for stochastic subgradient methods with momentum. From a practical perspective, one issue with the family of algorithms that we consider is that they are not efficiently supported by machine learning frameworks, which mostly focus on distributed data-parallel strategies. To address this, we propose a new implementation strategy for shared-memory based training of deep neural networks for a partitioned but shared model in single- and multi-GPU settings. Based on this implementation, we achieve on average about 1.2x speed-up in comparison to state-of-the-art training methods for popular image classification tasks, without compromising accuracy.
Název v anglickém jazyce
Asynchronous Optimization Methods for Efficient Training of Deep Neural Networks with Guarantees
Popis výsledku anglicky
Asynchronous distributed algorithms are a popular way to reduce synchronization costs in large-scale optimization, and in particular for neural network training. However, for nonsmooth and nonconvex objectives, few convergence guarantees exist beyond cases where closed-form proximal operator solutions are available. As training most popular deep neural networks corresponds to optimizing nonsmooth and nonconvex objectives, there is a pressing need for such convergence guarantees. In this paper, we analyze for the first time the convergence of stochastic asynchronous optimization for this general class of objectives. In particular, we focus on stochastic subgradient methods allowing for block variable partitioning, where the shared model is asynchronously updated by concurrent processes. To this end, we use a probabilistic model which captures key features of real asynchronous scheduling between concurrent processes. Under this model, we establish convergence with probability one to an invariant set for stochastic subgradient methods with momentum. From a practical perspective, one issue with the family of algorithms that we consider is that they are not efficiently supported by machine learning frameworks, which mostly focus on distributed data-parallel strategies. To address this, we propose a new implementation strategy for shared-memory based training of deep neural networks for a partitioned but shared model in single- and multi-GPU settings. Based on this implementation, we achieve on average about 1.2x speed-up in comparison to state-of-the-art training methods for popular image classification tasks, without compromising accuracy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the AAAI Conference on Artificial Intelligence
ISBN
978-1-57735-866-4
ISSN
2159-5399
e-ISSN
2374-3468
Počet stran výsledku
8
Strana od-do
8209-8216
Název nakladatele
Association for the Advancement of Artificial Intelligence (AAAI)
Místo vydání
Palo Alto, California
Místo konání akce
Virtual
Datum konání akce
2. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000680423508037