Multisensorial robot calibration framework and toolbox
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00352664" target="_blank" >RIV/68407700:21230/21:00352664 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/21:00352664
Výsledek na webu
<a href="https://doi.org/10.1109/HUMANOIDS47582.2021.9555803" target="_blank" >https://doi.org/10.1109/HUMANOIDS47582.2021.9555803</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/HUMANOIDS47582.2021.9555803" target="_blank" >10.1109/HUMANOIDS47582.2021.9555803</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multisensorial robot calibration framework and toolbox
Popis výsledku v původním jazyce
The accuracy of robot models critically impacts their performance. With the advent of collaborative, social, or soft robots, the stiffness of the materials and the precision of the manufactured parts drops and CAD models provide a less accurate basis for the models. On the other hand, the machines often come with a rich set of powerful yet inexpensive sensors, which opens up the possibility for self-contained calibration approaches that can be performed autonomously and repeatedly by the robot. In this work, we extend the theory dealing with robot kinematic calibration by incorporating new sensory modalities (e.g., cameras on the robot, whole-body tactile sensors), calibration types, and their combinations. We provide a unified formulation that makes it possible to combine traditional approaches (external laser tracker, constraints from contact with the external environment) with self-contained calibration available to humanoid robots (self-observation, self-contact) in a single framework and single cost function. Second, we present an open source toolbox for Matlab that provides this functionality, along with additional tools for preprocessing (e.g., dataset visualization) and evaluation (e.g., observability/identifiability). We illustrate some of the possibilities of this tool through calibration of two humanoid robots (iCub, Nao) and one industrial manipulator (dual-arm setup with Yaskawa-Motoman MA1400).
Název v anglickém jazyce
Multisensorial robot calibration framework and toolbox
Popis výsledku anglicky
The accuracy of robot models critically impacts their performance. With the advent of collaborative, social, or soft robots, the stiffness of the materials and the precision of the manufactured parts drops and CAD models provide a less accurate basis for the models. On the other hand, the machines often come with a rich set of powerful yet inexpensive sensors, which opens up the possibility for self-contained calibration approaches that can be performed autonomously and repeatedly by the robot. In this work, we extend the theory dealing with robot kinematic calibration by incorporating new sensory modalities (e.g., cameras on the robot, whole-body tactile sensors), calibration types, and their combinations. We provide a unified formulation that makes it possible to combine traditional approaches (external laser tracker, constraints from contact with the external environment) with self-contained calibration available to humanoid robots (self-observation, self-contact) in a single framework and single cost function. Second, we present an open source toolbox for Matlab that provides this functionality, along with additional tools for preprocessing (e.g., dataset visualization) and evaluation (e.g., observability/identifiability). We illustrate some of the possibilities of this tool through calibration of two humanoid robots (iCub, Nao) and one industrial manipulator (dual-arm setup with Yaskawa-Motoman MA1400).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-24186X" target="_blank" >GX20-24186X: Vědomí celého povrchu těla pro bezpečnou a přirozenou interakci: od mozku ke kolaborativním robotům</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)
ISBN
978-1-7281-9372-4
ISSN
2164-0572
e-ISSN
2164-0580
Počet stran výsledku
8
Strana od-do
459-466
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Munich
Datum konání akce
19. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000728400200054