Soft Frequency Reuse With Allocation of Resource Plans Based on Machine Learning in the Networks With Flying Base Stations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00353193" target="_blank" >RIV/68407700:21230/21:00353193 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ACCESS.2021.3099535" target="_blank" >https://doi.org/10.1109/ACCESS.2021.3099535</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2021.3099535" target="_blank" >10.1109/ACCESS.2021.3099535</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Soft Frequency Reuse With Allocation of Resource Plans Based on Machine Learning in the Networks With Flying Base Stations
Popis výsledku v původním jazyce
Flying base stations (FlyBSs) enable ubiquitous communications in the next generation mobile networks with a flexible topology. However, a deployment of the FlyBSs intensifies interference, which can result in a degradation in the throughput of cell-edge users. In this paper, we introduce a flexible soft frequency reuse (F-SFR) that enables a self-organization of a common SFR in the networks with an unpredictable and dynamic topology with the FlyBSs. We propose a graph theory-based algorithm for an allocation of resource plans, which is understood as a bandwidth allocation and a transmission power setting in the context of SFR. Furthermore, we introduce a low-complexity implementation of the proposed resource allocation using deep neural network (DNN) to significantly reduce the computation complexity. We show that the proposed F-SFR increases the throughput of cell-edge users by 16% to 26% and, at the same time, improves the satisfaction of the cell-edge users by up to 25% compared to the state-of-the-art solutions. We also demonstrate that the proposed scheme ensures a higher fairness in the throughput among the users with respect to the state-of-the-art solutions. The implementation via DNN also outperforms all state-of-the-art solutions despite its very low complexity.
Název v anglickém jazyce
Soft Frequency Reuse With Allocation of Resource Plans Based on Machine Learning in the Networks With Flying Base Stations
Popis výsledku anglicky
Flying base stations (FlyBSs) enable ubiquitous communications in the next generation mobile networks with a flexible topology. However, a deployment of the FlyBSs intensifies interference, which can result in a degradation in the throughput of cell-edge users. In this paper, we introduce a flexible soft frequency reuse (F-SFR) that enables a self-organization of a common SFR in the networks with an unpredictable and dynamic topology with the FlyBSs. We propose a graph theory-based algorithm for an allocation of resource plans, which is understood as a bandwidth allocation and a transmission power setting in the context of SFR. Furthermore, we introduce a low-complexity implementation of the proposed resource allocation using deep neural network (DNN) to significantly reduce the computation complexity. We show that the proposed F-SFR increases the throughput of cell-edge users by 16% to 26% and, at the same time, improves the satisfaction of the cell-edge users by up to 25% compared to the state-of-the-art solutions. We also demonstrate that the proposed scheme ensures a higher fairness in the throughput among the users with respect to the state-of-the-art solutions. The implementation via DNN also outperforms all state-of-the-art solutions despite its very low complexity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-27023S" target="_blank" >GA18-27023S: Komunikace v samo-optimalizujících se mobilních sítích s drony</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
9
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
104887-104903
Kód UT WoS článku
000679528200001
EID výsledku v databázi Scopus
2-s2.0-85112005847