Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gait Genesis Through Emergent Ordering of RBF Neurons on Central Pattern Generator for Hexapod Walking Robot

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355327" target="_blank" >RIV/68407700:21230/21:00355327 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gait Genesis Through Emergent Ordering of RBF Neurons on Central Pattern Generator for Hexapod Walking Robot

  • Popis výsledku v původním jazyce

    The neurally based gait controllers for multi-legged robots are designed to reproduce the plasticity observed in animal locomotion. In animals, gaits are regulated by Central Pattern Generator (CPG), a recurrent neural network producing rhythmical signals prescribing each leg’s action timing, leading to coordinated motion of multiple legs. The biomimetic CPG-RBF architecture, where leg motion timing is encoded by Radial Basis Function (RBF) neurons coupled with CPG, is used in recent gait controllers. However, the RBF neurons coupling is usually parameterized by the supervisor. Therefore, the RBF parameters get outdated when the CPG signal’s wave-form changes. We propose self-supervised dynamics for RBF parameters adapting to a given CPG and producing the required gait rhythm. The method orders the leg activity with respect to inter-leg coordination rules and maps the activity onto CPG states. The proposed dynamics produce rhythmic control for three different hexapod gaits and adapts to the CPG parametric changes.

  • Název v anglickém jazyce

    Gait Genesis Through Emergent Ordering of RBF Neurons on Central Pattern Generator for Hexapod Walking Robot

  • Popis výsledku anglicky

    The neurally based gait controllers for multi-legged robots are designed to reproduce the plasticity observed in animal locomotion. In animals, gaits are regulated by Central Pattern Generator (CPG), a recurrent neural network producing rhythmical signals prescribing each leg’s action timing, leading to coordinated motion of multiple legs. The biomimetic CPG-RBF architecture, where leg motion timing is encoded by Radial Basis Function (RBF) neurons coupled with CPG, is used in recent gait controllers. However, the RBF neurons coupling is usually parameterized by the supervisor. Therefore, the RBF parameters get outdated when the CPG signal’s wave-form changes. We propose self-supervised dynamics for RBF parameters adapting to a given CPG and producing the required gait rhythm. The method orders the leg activity with respect to inter-leg coordination rules and maps the activity onto CPG states. The proposed dynamics produce rhythmic control for three different hexapod gaits and adapts to the CPG parametric changes.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC21-33041J" target="_blank" >GC21-33041J: Učení plánování pohybu ve složitých úlohách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 21st Conference Information Technologies – Applications and Theory (ITAT 2021)

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

    1613-0073

  • Počet stran výsledku

    9

  • Strana od-do

    114-122

  • Název nakladatele

    CEUR Workshop Proceedings

  • Místo vydání

    Aachen

  • Místo konání akce

    Heľpa

  • Datum konání akce

    24. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku