An Algorithm to Solve Systems of Nonlinear Differential-Algebraic Equations With Extraordinary Efficiency Even at High Demanded Precisions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355588" target="_blank" >RIV/68407700:21230/21:00355588 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Algorithm to Solve Systems of Nonlinear Differential-Algebraic Equations With Extraordinary Efficiency Even at High Demanded Precisions
Popis výsledku v původním jazyce
There are many situations when systems of nonlinear differential algebraic equations need to be solved with extraordinary precision. A steady-state analysis (determining the steady-state period of a system after a transient) is a typical case because a vector of unknown variables should be exactly the same after a numerical integration on the period-long interval. Therefore, we need to develop such kinds of numerical algorithms that are computationally effective, even at very high requirements on the accuracy of the results. In the paper, an efficient and reliable algorithm for solving systems of algebraic-differential nonlinear equations is characterized first. Unlike in other cases, the procedure is based on a sophisticated arrangement of the Newton interpolation polynomial (i.e., not the Lagrange one). This feature provides greater flexibility in rapidly changing interpolation step sizes and orders during numerical integration. At the end of the paper, two complicated examples are presented to demonstrate that the algorithm's computational requirement is quite low, even at very high demands on the accuracy of results.
Název v anglickém jazyce
An Algorithm to Solve Systems of Nonlinear Differential-Algebraic Equations With Extraordinary Efficiency Even at High Demanded Precisions
Popis výsledku anglicky
There are many situations when systems of nonlinear differential algebraic equations need to be solved with extraordinary precision. A steady-state analysis (determining the steady-state period of a system after a transient) is a typical case because a vector of unknown variables should be exactly the same after a numerical integration on the period-long interval. Therefore, we need to develop such kinds of numerical algorithms that are computationally effective, even at very high requirements on the accuracy of the results. In the paper, an efficient and reliable algorithm for solving systems of algebraic-differential nonlinear equations is characterized first. Unlike in other cases, the procedure is based on a sophisticated arrangement of the Newton interpolation polynomial (i.e., not the Lagrange one). This feature provides greater flexibility in rapidly changing interpolation step sizes and orders during numerical integration. At the end of the paper, two complicated examples are presented to demonstrate that the algorithm's computational requirement is quite low, even at very high demands on the accuracy of results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-26849S" target="_blank" >GA20-26849S: Nové algoritmy pro přesnou, efektivní a robustní analýzu rozsáhlých systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proc. of the 2021 International Conference on Computational Science and Computational Intelligence (CSCI’21)
ISBN
978-1-60132-515-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1-5
Název nakladatele
IEEE Computer Society
Místo vydání
Los Alamitos
Místo konání akce
Las Vegas
Datum konání akce
15. 12. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—