Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Algorithm to Solve Systems of Nonlinear Differential-Algebraic Equations With Extraordinary Efficiency Even at High Demanded Precisions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00355588" target="_blank" >RIV/68407700:21230/21:00355588 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Algorithm to Solve Systems of Nonlinear Differential-Algebraic Equations With Extraordinary Efficiency Even at High Demanded Precisions

  • Popis výsledku v původním jazyce

    There are many situations when systems of nonlinear differential algebraic equations need to be solved with extraordinary precision. A steady-state analysis (determining the steady-state period of a system after a transient) is a typical case because a vector of unknown variables should be exactly the same after a numerical integration on the period-long interval. Therefore, we need to develop such kinds of numerical algorithms that are computationally effective, even at very high requirements on the accuracy of the results. In the paper, an efficient and reliable algorithm for solving systems of algebraic-differential nonlinear equations is characterized first. Unlike in other cases, the procedure is based on a sophisticated arrangement of the Newton interpolation polynomial (i.e., not the Lagrange one). This feature provides greater flexibility in rapidly changing interpolation step sizes and orders during numerical integration. At the end of the paper, two complicated examples are presented to demonstrate that the algorithm's computational requirement is quite low, even at very high demands on the accuracy of results.

  • Název v anglickém jazyce

    An Algorithm to Solve Systems of Nonlinear Differential-Algebraic Equations With Extraordinary Efficiency Even at High Demanded Precisions

  • Popis výsledku anglicky

    There are many situations when systems of nonlinear differential algebraic equations need to be solved with extraordinary precision. A steady-state analysis (determining the steady-state period of a system after a transient) is a typical case because a vector of unknown variables should be exactly the same after a numerical integration on the period-long interval. Therefore, we need to develop such kinds of numerical algorithms that are computationally effective, even at very high requirements on the accuracy of the results. In the paper, an efficient and reliable algorithm for solving systems of algebraic-differential nonlinear equations is characterized first. Unlike in other cases, the procedure is based on a sophisticated arrangement of the Newton interpolation polynomial (i.e., not the Lagrange one). This feature provides greater flexibility in rapidly changing interpolation step sizes and orders during numerical integration. At the end of the paper, two complicated examples are presented to demonstrate that the algorithm's computational requirement is quite low, even at very high demands on the accuracy of results.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-26849S" target="_blank" >GA20-26849S: Nové algoritmy pro přesnou, efektivní a robustní analýzu rozsáhlých systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proc. of the 2021 International Conference on Computational Science and Computational Intelligence (CSCI’21)

  • ISBN

    978-1-60132-515-0

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    1-5

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Las Vegas

  • Datum konání akce

    15. 12. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku