Computing the execution probability of jobs with replication in mixed-criticality schedules
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00353816" target="_blank" >RIV/68407700:21230/22:00353816 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/22:00353816
Výsledek na webu
<a href="https://doi.org/10.1007/s10479-021-04445-x" target="_blank" >https://doi.org/10.1007/s10479-021-04445-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10479-021-04445-x" target="_blank" >10.1007/s10479-021-04445-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computing the execution probability of jobs with replication in mixed-criticality schedules
Popis výsledku v původním jazyce
Mixed-criticality scheduling addresses the problem of sharing common resources among jobs of different degrees of criticality and uncertain processing times. The processing time of jobs is observed during the online execution of the schedule with the prolongations of critical jobs being compensated by the rejection of less critical ones. One of the central questions in the field of mixed-criticality scheduling is ensuring the high reliability of the system with as few resources as possible. In this paper, we study the computation of the execution probability of jobs with uncertain processing times in a static mixed-criticality schedule. The aim is to compute the execution probability of jobs (i.e., the objective function of a schedule), which is a problem solvable by a closed-form formula when the jobs are not replicated. We introduce the job replication, i.e., scheduling a single job multiple times, as a new mechanism for increasing the execution probability of jobs. We show that the general problem with job replication becomes #P-hard, which is proven by the reduction from the counting variant of 3-SAT problem. To compute the execution probability, we propose an algorithm utilizing the framework of Bayesian networks. Furthermore, we show that cases of practical interest admit a polynomial-time algorithm and are efficiently solvable. The proposed methodology demonstrates an interesting connection between schedules with uncertain execution and probabilistic graphical models and opens a new approach to the analysis of mixed-criticality schedules.
Název v anglickém jazyce
Computing the execution probability of jobs with replication in mixed-criticality schedules
Popis výsledku anglicky
Mixed-criticality scheduling addresses the problem of sharing common resources among jobs of different degrees of criticality and uncertain processing times. The processing time of jobs is observed during the online execution of the schedule with the prolongations of critical jobs being compensated by the rejection of less critical ones. One of the central questions in the field of mixed-criticality scheduling is ensuring the high reliability of the system with as few resources as possible. In this paper, we study the computation of the execution probability of jobs with uncertain processing times in a static mixed-criticality schedule. The aim is to compute the execution probability of jobs (i.e., the objective function of a schedule), which is a problem solvable by a closed-form formula when the jobs are not replicated. We introduce the job replication, i.e., scheduling a single job multiple times, as a new mechanism for increasing the execution probability of jobs. We show that the general problem with job replication becomes #P-hard, which is proven by the reduction from the counting variant of 3-SAT problem. To compute the execution probability, we propose an algorithm utilizing the framework of Bayesian networks. Furthermore, we show that cases of practical interest admit a polynomial-time algorithm and are efficiently solvable. The proposed methodology demonstrates an interesting connection between schedules with uncertain execution and probabilistic graphical models and opens a new approach to the analysis of mixed-criticality schedules.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Operations Research
ISSN
0254-5330
e-ISSN
1572-9338
Svazek periodika
309
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
209-232
Kód UT WoS článku
000736784600001
EID výsledku v databázi Scopus
2-s2.0-85122668693