Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Computing the execution probability of jobs with replication in mixed-criticality schedules

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00353816" target="_blank" >RIV/68407700:21230/22:00353816 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/22:00353816

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10479-021-04445-x" target="_blank" >https://doi.org/10.1007/s10479-021-04445-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10479-021-04445-x" target="_blank" >10.1007/s10479-021-04445-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Computing the execution probability of jobs with replication in mixed-criticality schedules

  • Popis výsledku v původním jazyce

    Mixed-criticality scheduling addresses the problem of sharing common resources among jobs of different degrees of criticality and uncertain processing times. The processing time of jobs is observed during the online execution of the schedule with the prolongations of critical jobs being compensated by the rejection of less critical ones. One of the central questions in the field of mixed-criticality scheduling is ensuring the high reliability of the system with as few resources as possible. In this paper, we study the computation of the execution probability of jobs with uncertain processing times in a static mixed-criticality schedule. The aim is to compute the execution probability of jobs (i.e., the objective function of a schedule), which is a problem solvable by a closed-form formula when the jobs are not replicated. We introduce the job replication, i.e., scheduling a single job multiple times, as a new mechanism for increasing the execution probability of jobs. We show that the general problem with job replication becomes #P-hard, which is proven by the reduction from the counting variant of 3-SAT problem. To compute the execution probability, we propose an algorithm utilizing the framework of Bayesian networks. Furthermore, we show that cases of practical interest admit a polynomial-time algorithm and are efficiently solvable. The proposed methodology demonstrates an interesting connection between schedules with uncertain execution and probabilistic graphical models and opens a new approach to the analysis of mixed-criticality schedules.

  • Název v anglickém jazyce

    Computing the execution probability of jobs with replication in mixed-criticality schedules

  • Popis výsledku anglicky

    Mixed-criticality scheduling addresses the problem of sharing common resources among jobs of different degrees of criticality and uncertain processing times. The processing time of jobs is observed during the online execution of the schedule with the prolongations of critical jobs being compensated by the rejection of less critical ones. One of the central questions in the field of mixed-criticality scheduling is ensuring the high reliability of the system with as few resources as possible. In this paper, we study the computation of the execution probability of jobs with uncertain processing times in a static mixed-criticality schedule. The aim is to compute the execution probability of jobs (i.e., the objective function of a schedule), which is a problem solvable by a closed-form formula when the jobs are not replicated. We introduce the job replication, i.e., scheduling a single job multiple times, as a new mechanism for increasing the execution probability of jobs. We show that the general problem with job replication becomes #P-hard, which is proven by the reduction from the counting variant of 3-SAT problem. To compute the execution probability, we propose an algorithm utilizing the framework of Bayesian networks. Furthermore, we show that cases of practical interest admit a polynomial-time algorithm and are efficiently solvable. The proposed methodology demonstrates an interesting connection between schedules with uncertain execution and probabilistic graphical models and opens a new approach to the analysis of mixed-criticality schedules.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Umělá inteligence a uvažování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Annals of Operations Research

  • ISSN

    0254-5330

  • e-ISSN

    1572-9338

  • Svazek periodika

    309

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

    209-232

  • Kód UT WoS článku

    000736784600001

  • EID výsledku v databázi Scopus

    2-s2.0-85122668693