Deep Learning Neural Network Algorithm for Computation of SPICE Transient Simulation of Nonlinear Time Dependent Circuits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00355671" target="_blank" >RIV/68407700:21230/22:00355671 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/electronics11010015" target="_blank" >https://doi.org/10.3390/electronics11010015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/electronics11010015" target="_blank" >10.3390/electronics11010015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning Neural Network Algorithm for Computation of SPICE Transient Simulation of Nonlinear Time Dependent Circuits
Popis výsledku v původním jazyce
In this paper, a special method based on the neural network is presented, which is conveniently used to precompute the steps of numerical integration. This method approximates the behaviour of the numerical integrator with respect to the local truncation error. In other words, it allows the precomputation of the individual steps in such a way that they do not need to be estimated by an algorithm but can be directly estimated by a neural network. Experimental tests were performed on a series of electrical circuits with different component parameters. The method was tested for two integration methods implemented in the simulation program SPICE (Trapez and Gear). For each type of circuit, a custom network was trained. Experimental simulations showed that for well-defined problems with a sufficiently trained network, {the method allows in most cases reducing} the total number of iteration steps performed by the algorithm during the simulation computation. Applications of this method, drawbacks, and possible further optimizations are also discussed.
Název v anglickém jazyce
Deep Learning Neural Network Algorithm for Computation of SPICE Transient Simulation of Nonlinear Time Dependent Circuits
Popis výsledku anglicky
In this paper, a special method based on the neural network is presented, which is conveniently used to precompute the steps of numerical integration. This method approximates the behaviour of the numerical integrator with respect to the local truncation error. In other words, it allows the precomputation of the individual steps in such a way that they do not need to be estimated by an algorithm but can be directly estimated by a neural network. Experimental tests were performed on a series of electrical circuits with different component parameters. The method was tested for two integration methods implemented in the simulation program SPICE (Trapez and Gear). For each type of circuit, a custom network was trained. Experimental simulations showed that for well-defined problems with a sufficiently trained network, {the method allows in most cases reducing} the total number of iteration steps performed by the algorithm during the simulation computation. Applications of this method, drawbacks, and possible further optimizations are also discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-26849S" target="_blank" >GA20-26849S: Nové algoritmy pro přesnou, efektivní a robustní analýzu rozsáhlých systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronics
ISSN
2079-9292
e-ISSN
2079-9292
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000751065800001
EID výsledku v databázi Scopus
2-s2.0-85121448979