Optical CS-DSB Schemes for 5G mmW Fronthaul Seamless Transmission
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00357756" target="_blank" >RIV/68407700:21230/22:00357756 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/JPHOT.2022.3161087" target="_blank" >https://doi.org/10.1109/JPHOT.2022.3161087</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JPHOT.2022.3161087" target="_blank" >10.1109/JPHOT.2022.3161087</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optical CS-DSB Schemes for 5G mmW Fronthaul Seamless Transmission
Popis výsledku v původním jazyce
This paper describes the experimental demonstration of the hybrid optical/millimeter wave signal generation and transmission over combined optical fiber and free space optics fronthaul network with a seamless antenna link. An electrical bandpass filter is used to filter out the spectrum after photodetection in order to realize the seamless antenna transmission. The successful transmission of 64/256-quadrature amplitude modulation (QAM) 5G signal with up to 200 MHz bandwidth is presented by using two different setups: one is based on two Mach-Zehnder modulators (MZM) and the other employs a directly modulated laser (DML) to provide more cost efficient fronthaul solution. The DML based approach reveals mildly better performance in comparison to the MZMs in terms of higher achieved signal-to-noise ratio and lower error vector magnitude (EVM). More specifically, the best signal-to-noise ratio and EVM achieved with the DML based setup has been 31.5 dB and 3. 3%, respectively, compared to 30.3 dB and 3.8% with the MZMs based setup while transmitting 256-QAM signal with 100 MHz bandwidth. However, both setups kept the EVM well below the given 9% and 4.5% limit for 64- and 256-QAM, respectively.
Název v anglickém jazyce
Optical CS-DSB Schemes for 5G mmW Fronthaul Seamless Transmission
Popis výsledku anglicky
This paper describes the experimental demonstration of the hybrid optical/millimeter wave signal generation and transmission over combined optical fiber and free space optics fronthaul network with a seamless antenna link. An electrical bandpass filter is used to filter out the spectrum after photodetection in order to realize the seamless antenna transmission. The successful transmission of 64/256-quadrature amplitude modulation (QAM) 5G signal with up to 200 MHz bandwidth is presented by using two different setups: one is based on two Mach-Zehnder modulators (MZM) and the other employs a directly modulated laser (DML) to provide more cost efficient fronthaul solution. The DML based approach reveals mildly better performance in comparison to the MZMs in terms of higher achieved signal-to-noise ratio and lower error vector magnitude (EVM). More specifically, the best signal-to-noise ratio and EVM achieved with the DML based setup has been 31.5 dB and 3. 3%, respectively, compared to 30.3 dB and 3.8% with the MZMs based setup while transmitting 256-QAM signal with 100 MHz bandwidth. However, both setups kept the EVM well below the given 9% and 4.5% limit for 64- and 256-QAM, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
<a href="/cs/project/FV40089" target="_blank" >FV40089: Moduly vysokorychlostních optických zdrojů pro datová centra</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE PHOTONICS JOURNAL
ISSN
1943-0655
e-ISSN
1943-0647
Svazek periodika
14
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
1-7
Kód UT WoS článku
000782414400008
EID výsledku v databázi Scopus
2-s2.0-85127083820