An algebraic correction for the Westervelt equation to account for the local nonlinear effects in parametric acoustic array
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00358569" target="_blank" >RIV/68407700:21230/22:00358569 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1121/10.0011747" target="_blank" >https://doi.org/10.1121/10.0011747</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1121/10.0011747" target="_blank" >10.1121/10.0011747</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An algebraic correction for the Westervelt equation to account for the local nonlinear effects in parametric acoustic array
Popis výsledku v původním jazyce
This work presents a simple computational approach for the calculation of parametrically generated low-frequency sound fields. The Westervelt wave equation is employed as a model equation that accounts for the wave diffraction, attenuation, and nonlinearity. As it is known that the Westervelt equation captures the cumulative nonlinear effects correctly and not the local ones, an algebraic correction is proposed, which includes the local nonlinear effects in the solution of the Westervelt equation. This way, existing computational approaches for the Westervelt equation can be used even in situations where the generated acoustic field differs significantly from the plane progressive waves, such as in the near-field, and where the local effects manifest themselves strongly. The proposed approach is demonstrated and validated on an example of the parametric radiation from a baffled circular piston.
Název v anglickém jazyce
An algebraic correction for the Westervelt equation to account for the local nonlinear effects in parametric acoustic array
Popis výsledku anglicky
This work presents a simple computational approach for the calculation of parametrically generated low-frequency sound fields. The Westervelt wave equation is employed as a model equation that accounts for the wave diffraction, attenuation, and nonlinearity. As it is known that the Westervelt equation captures the cumulative nonlinear effects correctly and not the local ones, an algebraic correction is proposed, which includes the local nonlinear effects in the solution of the Westervelt equation. This way, existing computational approaches for the Westervelt equation can be used even in situations where the generated acoustic field differs significantly from the plane progressive waves, such as in the near-field, and where the local effects manifest themselves strongly. The proposed approach is demonstrated and validated on an example of the parametric radiation from a baffled circular piston.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
ISSN
0001-4966
e-ISSN
1520-8524
Svazek periodika
151
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
4046-4052
Kód UT WoS článku
000811844100005
EID výsledku v databázi Scopus
2-s2.0-85132302723