Cooperative Navigation and Guidance of a Micro-Scale Aerial Vehicle by an Accompanying UAV using 3D LiDAR Relative Localization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359583" target="_blank" >RIV/68407700:21230/22:00359583 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ICUAS54217.2022.9836116" target="_blank" >https://doi.org/10.1109/ICUAS54217.2022.9836116</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICUAS54217.2022.9836116" target="_blank" >10.1109/ICUAS54217.2022.9836116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cooperative Navigation and Guidance of a Micro-Scale Aerial Vehicle by an Accompanying UAV using 3D LiDAR Relative Localization
Popis výsledku v původním jazyce
A novel approach for cooperative navigation and guidance of a micro-scale aerial vehicle by an accompanying Unmanned Aerial Vehicle (UAV) using 3D Light Detection and Ranging (LiDAR) relative localization is proposed in this paper. The use of 3D LiDARs represents a reliable way of environment perception and robust UAV self-localization in Global Navigation Satellite System (GNSS)-denied environments. However, 3D LiDARs are relatively heavy and they need to be carried by large UAV platforms. On the contrary, visual cameras are cheap, light-weight, and therefore ideal for small UAVs. However, visual self-localization methods suffer from loss of precision in texture-less environments, scale unobservability during certain maneuvers, and long-term drift with respect to the global frame of reference. Nevertheless, a micro-scale camera-equipped UAV is ideal for complementing a 3D LiDAR-equipped UAV as it can reach places inaccessible to a large UAV platform. To gain the advantages of both navigation approaches, we propose a cooperative navigation and guidance architecture utilizing a large LiDAR-equipped UAV accompanied by a small secondary UAV carrying a significantly lighter monocular camera. The primary UAV is localized by a robust LiDAR Simultaneous Localization and Mapping (SLAM) algorithm, while the secondary UAV utilizes a Visual-Inertial Odometry (VIO) approach with lower precision and reliability. The LiDAR data are used for markerless relative localization between the UAVs to enable precise guidance of the secondary UAV in the frame of reference of the LiDAR SLAM. The performance of the proposed approach has been extensively verified in simulations and real-world experiments with the algorithms running onboard the UAVs with no external localization infrastructure.
Název v anglickém jazyce
Cooperative Navigation and Guidance of a Micro-Scale Aerial Vehicle by an Accompanying UAV using 3D LiDAR Relative Localization
Popis výsledku anglicky
A novel approach for cooperative navigation and guidance of a micro-scale aerial vehicle by an accompanying Unmanned Aerial Vehicle (UAV) using 3D Light Detection and Ranging (LiDAR) relative localization is proposed in this paper. The use of 3D LiDARs represents a reliable way of environment perception and robust UAV self-localization in Global Navigation Satellite System (GNSS)-denied environments. However, 3D LiDARs are relatively heavy and they need to be carried by large UAV platforms. On the contrary, visual cameras are cheap, light-weight, and therefore ideal for small UAVs. However, visual self-localization methods suffer from loss of precision in texture-less environments, scale unobservability during certain maneuvers, and long-term drift with respect to the global frame of reference. Nevertheless, a micro-scale camera-equipped UAV is ideal for complementing a 3D LiDAR-equipped UAV as it can reach places inaccessible to a large UAV platform. To gain the advantages of both navigation approaches, we propose a cooperative navigation and guidance architecture utilizing a large LiDAR-equipped UAV accompanied by a small secondary UAV carrying a significantly lighter monocular camera. The primary UAV is localized by a robust LiDAR Simultaneous Localization and Mapping (SLAM) algorithm, while the secondary UAV utilizes a Visual-Inertial Odometry (VIO) approach with lower precision and reliability. The LiDAR data are used for markerless relative localization between the UAVs to enable precise guidance of the secondary UAV in the frame of reference of the LiDAR SLAM. The performance of the proposed approach has been extensively verified in simulations and real-world experiments with the algorithms running onboard the UAVs with no external localization infrastructure.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 International Conference on Unmanned Aircraft Systems (ICUAS)
ISBN
978-1-6654-0593-5
ISSN
2373-6720
e-ISSN
2575-7296
Počet stran výsledku
10
Strana od-do
526-535
Název nakladatele
IEEE Industrial Electronics Society
Místo vydání
Piscataway
Místo konání akce
Dubrovnik
Datum konání akce
21. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000854030400062