Adversarial Examples by Perturbing High-level Features in Intermediate Decoder Layers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00359626" target="_blank" >RIV/68407700:21230/22:00359626 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.5220/0010892800003116" target="_blank" >https://doi.org/10.5220/0010892800003116</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0010892800003116" target="_blank" >10.5220/0010892800003116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adversarial Examples by Perturbing High-level Features in Intermediate Decoder Layers
Popis výsledku v původním jazyce
We propose a novel method for creating adversarial examples. Instead of perturbing pixels, we use an encoder-decoder representation of the input image and perturb intermediate layers in the decoder. This changes the high-level features provided by the generative model. Therefore, our perturbation possesses semantic meaning, such as a longer beak or green tints. We formulate this task as an optimization problem by minimizing the Wasserstein distance between the adversarial and initial images under a misclassification constraint. We employ the projected gradient method with a simple inexact projection. Due to the projection, all iterations are feasible, and our method always generates adversarial images. We perform numerical experiments by fooling MNIST and ImageNet classifiers in both targeted and untargeted settings. We demonstrate that our adversarial images are much less vulnerable to steganographic defence techniques than pixel-based attacks. Moreover, we show that our method modifies key features such as edges and that defence techniques based on adversarial training are vulnerable to our attacks.
Název v anglickém jazyce
Adversarial Examples by Perturbing High-level Features in Intermediate Decoder Layers
Popis výsledku anglicky
We propose a novel method for creating adversarial examples. Instead of perturbing pixels, we use an encoder-decoder representation of the input image and perturb intermediate layers in the decoder. This changes the high-level features provided by the generative model. Therefore, our perturbation possesses semantic meaning, such as a longer beak or green tints. We formulate this task as an optimization problem by minimizing the Wasserstein distance between the adversarial and initial images under a misclassification constraint. We employ the projected gradient method with a simple inexact projection. Due to the projection, all iterations are feasible, and our method always generates adversarial images. We perform numerical experiments by fooling MNIST and ImageNet classifiers in both targeted and untargeted settings. We demonstrate that our adversarial images are much less vulnerable to steganographic defence techniques than pixel-based attacks. Moreover, we show that our method modifies key features such as edges and that defence techniques based on adversarial training are vulnerable to our attacks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2
ISBN
978-989-758-547-0
ISSN
—
e-ISSN
2184-433X
Počet stran výsledku
12
Strana od-do
496-507
Název nakladatele
SciTePress - Science and Technology Publications
Místo vydání
Porto
Místo konání akce
Online Streaming
Datum konání akce
3. 3. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000774441800046